Q 1)

(a)

Fixed left end:

$$
\begin{aligned}
u(x=0) & =0 \\
\left.\frac{d u}{d x}\right|_{x=0} & =0
\end{aligned}
$$

Moment and stress free right end:

$$
\begin{aligned}
& \left.\frac{d^{2} u}{d x^{2}}\right|_{x=L}=0 \\
& \left.\frac{d^{3} u}{d x^{3}}\right|_{x=L}=0
\end{aligned}
$$

(b)

$$
\int_{0}^{L} E I \frac{d^{2} u}{d x^{2}} \frac{d^{2} v}{d x^{2}} d x=\int_{0}^{L} f(x) v d x+\left.E I \frac{d^{2} u}{d x^{2}} \frac{d v}{d x}\right|_{0} ^{L}-\left.E I \frac{d^{3} u}{d x^{3}} v\right|_{0} ^{L}
$$

Inserting boundary condition:

$$
\int_{0}^{L} E I \frac{d^{2} u}{d x^{2}} \frac{d^{2} v}{d x^{2}} d x=\int_{0}^{L} q(x) v d x
$$

(c) Shape functions with continuous first derivative is requried. One can use the shear deformable theory where the beam rotation is no longer equal to the derivative of the deflection. There are at most first-order derivatives in the weak form. Therefore simple Lagrange finite element shape functions with discontinuous first derivatives can be used.
(d)

Let u_{h} denote the finite element solution. $m=E I \frac{d^{2} u_{h}}{d x^{2}}$ while $q=-E I \frac{d^{3} u_{h}}{d x^{3}}$.
The moment is more accurate. From the a-priori error estimate

$$
\left\|u-u_{h}\right\|_{2} \propto \mathcal{O}\left(h^{2}\right)
$$

while

$$
\left\|u-u_{h}\right\|_{3} \propto \mathcal{O}(h) .
$$

Therefore the error in m is smaller.

Q2) a)

$$
\text { a) } \begin{aligned}
& \nabla^{2} T+c T+s=0 \\
& \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+s=0 \\
& \int_{\Omega} \frac{\partial^{2} T}{\partial x^{2}} w=\int_{\Omega}\left(\frac{\partial T}{\partial x} w\right)^{\prime}-\int_{\Omega} \frac{\partial T}{\partial x} \frac{\partial w}{\partial s}=\int_{\Omega} \frac{\partial f^{\prime}}{\partial x} w n_{x}-\int_{\Omega} \frac{\partial T}{\partial x} \frac{\partial w}{\partial x} \\
& \Rightarrow \int_{\Omega} \frac{\partial T}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial T}{\partial y} \frac{\partial w}{\partial y}-c \int_{\Omega} T w=\int_{\Omega} s w
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \frac{\partial T}{\partial x} \cdot n_{x}+\frac{\partial T}{\partial y} n_{y}+\beta T=\bar{q} \\
& \int_{\Gamma}\left(\frac{\partial T}{\partial x} \cdot n_{x}+\frac{\partial T}{\partial y} n_{y}\right) w=\int_{\Gamma}(\bar{q}-\beta T) w \\
& \Rightarrow \\
&\left.\left.\int_{\Omega} \frac{\partial T}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial T}{\partial y} \frac{\partial w}{\partial y}-c\right)_{\Omega} T w+\beta\right)^{2} T w=\int_{\Gamma} s w-\int_{\Gamma} \bar{q} w
\end{aligned}
$$

c)

$$
\begin{array}{cc}
N_{2}(\xi, \eta)=\frac{5}{3} & N_{3}(\xi, \eta)=\frac{t}{2} \\
\nabla N_{2}=\binom{\frac{1}{3}}{0} & \nabla N_{3}=\binom{0}{\frac{1}{2}}
\end{array}
$$

$$
\begin{aligned}
& \text { Contrib. of } \int_{\Omega} \frac{\partial T}{\partial x} \frac{\partial w}{\partial x}+\frac{\partial T}{\partial y} \frac{\partial w}{\partial y} \\
& \int \frac{\partial N_{2}}{\partial s} \frac{\partial N_{2}}{\partial s}+\frac{\partial N_{2}}{\partial t} \frac{\partial N_{2}}{\partial t}=3 \frac{1}{9}=\frac{1}{3} \\
& \int \frac{\partial N_{2}}{\partial s} \frac{\partial N_{3}}{\partial s}+\frac{\partial N_{2}}{\partial t} \frac{\partial N_{3}}{\partial t}=3.0=0
\end{aligned}
$$

Contrib. of $c \int_{\Omega}^{T w}$

$$
\begin{aligned}
& c \int_{\Omega} N_{2} N_{2}=\int_{\Omega} \frac{s^{2}}{9}=c \int_{0}^{3} \frac{s^{2}}{9} \int_{0}^{2-\frac{2}{3} s} d t d s=c \int_{0}^{3} \frac{2 s^{2}}{9}\left(1-\frac{1}{3} s\right)=\frac{1}{2} c \\
& c \int_{\Omega} N_{2} N_{3}=\tau \int_{\Omega} \frac{s t}{6}=c \int_{0}^{3} s \int_{0}^{2-\frac{2}{3} s} t d t d s=\frac{3}{2} c
\end{aligned}
$$

Contrib. of $\beta \int_{\Gamma} T_{w}$ $r=\binom{3-3 \xi}{2 \xi} \quad r^{\prime}=\binom{-3}{2}$
$\left.\qquad \begin{array}{l}\left(r^{\prime}\right)^{2} \\ i\end{array}\right)=\sqrt{13}$

$$
\begin{aligned}
\beta \int_{\Gamma} N_{2} N_{2} & =\int_{\Gamma} \frac{3^{2}}{9} \\
& =\beta \int_{\Gamma}(3-3 \xi)^{2} \sqrt{13} d \xi=10,82 \beta \\
\beta \int N_{2} N_{3} & =\int_{r} \frac{1}{6} 2 \xi(3-3 \xi) d \xi=
\end{aligned}
$$

Note that node 2 receives contrib. from two elements. Hence, the $(2,2)$ contribs on previous page most be multiplied by two.

Qu)
a) Isoparametric mapping needed for defining shapefunctions for arbitrary quadrilaterals and curved boundaries.
b) i)

$$
\begin{aligned}
& \text { 1) } x(\xi, \eta)=4.0 \cdot N_{2}(\xi, \eta)+8.0 N_{3}(\xi, \eta)+4.0 N_{4}(\xi, \eta) \\
& y(\xi, \eta)=5.0 \cdot N_{3}(\xi, \eta)+5.0 N(\xi, \eta) \\
& \partial / \partial \xi \quad \begin{array}{c}
\partial / \partial \eta \\
N_{2} \quad \frac{1}{4}(1-\eta) \quad-\frac{1}{4}(1+\xi) \\
N_{3} \quad \frac{1}{4}(1+\eta) \quad \frac{1}{4}(1+\xi) \\
N_{4}-\frac{1}{4}(1+\eta) \quad \frac{1}{4}(1-\xi) \\
I=\left(\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial \eta}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial \eta}{\partial \eta}
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}
8 & 0 \\
8 & 10
\end{array}\right)
\end{array} \$.
\end{aligned}
$$

ii) $J^{-1}=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ -\frac{2}{5} & \frac{2}{5}\end{array}\right)$

$$
\begin{aligned}
& \varepsilon_{y y}=\frac{\partial v_{y}}{\partial y} \quad \varepsilon_{x y}=\frac{1}{2}\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right) \\
& u_{x}=\frac{1}{8}(1-\xi)(1+\eta) \\
& v_{y}=\frac{1}{20}(1-6)(1+\eta) \\
& \varepsilon_{y y}=\frac{\partial u_{y}}{\partial \xi} \frac{\partial \rho}{\partial y}+\frac{\partial u_{y}}{\partial \eta} \frac{\partial \eta}{\partial q_{y}} \\
& \left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial \eta}{\partial x} \\
\frac{\partial f}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{2}{5} & \frac{2}{5}
\end{array}\right) \\
& \varepsilon_{\eta y}=+\frac{1}{20}(1 \div \eta) \frac{2}{5}+\frac{1}{20}(1-\xi) \cdot \frac{2}{5}=\frac{1}{50}(2+\eta-\xi) \\
& 2 \varepsilon_{x y}=\frac{\partial v_{x}}{\partial \xi} \frac{\partial \xi}{\partial y}+\frac{\partial v_{x}}{\partial \eta} \frac{\partial \eta}{\partial y}+\frac{\partial v_{y}}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial v_{y}}{\partial \eta} \frac{\partial \eta}{\partial x} \\
& =+\frac{1}{8}(1+\eta) \frac{2}{5}+\frac{1}{8}(1-\xi) \frac{2}{5}-\frac{1}{20}(1+\eta) \frac{1}{2} \\
& =\frac{1}{40}(3+\eta-2 \xi)
\end{aligned}
$$

c) Trianyle:

$$
N_{1}=2(1-\xi-\eta)^{2}-(1-\xi-\eta)
$$

Quad:

$$
\begin{aligned}
N_{5} & =\frac{1}{2}(1-\xi)\left(1-\eta^{2}\right)-\frac{1}{2}\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) \\
& =\frac{1}{2}\left(\xi^{2}-\xi\right)\left(1-\eta^{2}\right)
\end{aligned}
$$

Q 4)

(a)

$$
\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

(b)

$$
M_{c}=\int_{0}^{L} \rho A N^{1}(x) N^{2}(x) d x
$$

where

$$
N^{1}(x)=x / L, x \in[0, L] N^{2}(x)=1-x / L, x \in[0, L]
$$

Hence M_{c} is given by

$$
\rho A L\left[\begin{array}{ll}
\frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3}
\end{array}\right]
$$

(c) Let ω be the eigen frequencies

$$
\operatorname{det}\left(K-\omega^{2} M\right)=0
$$

indicates

$$
\left(E A-\frac{m}{3} \omega^{2}\right)^{2}-\left(E A+\frac{m}{6} \omega^{2}\right)^{2}=0
$$

where and the mass of the beam $m=\rho A L$.
Therefore there are 2 eigen frequencies where $\omega_{1}=0$ and $\omega_{2}=\sqrt{\frac{12 E A}{m L}}=\sqrt{\frac{12 E}{\rho}} \frac{1}{L}$. The corresponding eigenmodes follow from insertion of the eigenfrequencies into the eigenvalue problem, giving

$$
U_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
U_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

(d) The stability constraint requires $\Delta t \leq \frac{2}{\omega_{\max }}$. Therefore $\Delta t_{c r}=\frac{2}{\omega_{2}}=\sqrt{\frac{\rho}{3 E}} L$

