## ENGINEERING TRIPOS PART IIB 2023

 MODULE 4A10
## Detailed comments

## Question 1

Linear stability of a shear flow
This question, attempted by the majority, required the manipulation and interpretation of a dispersion relationship governing the linear stability of a shear flow with surface tension. Whilst not at all straightforward, the vast majority of attempts were generally sound, with a number being excellent.

## Question 2

## Flow instability

This question, attempted by the majority, challenged the students on a broad range of material across the course, spanning energy arguments for centrifugal instability and density stratified shear flows together with aspects of capillary jet instability. Unlike question 1, this question required knowledge of some bookwork and although generally tackled well, numerous solutions gave solutions that were somewhat sloppy or incomplete, missing key aspects of the rigour required for the derivations sought.

## Question 3

## Added Mass

This question was difficult and was only answered by seven students. In (a), no students took the hint to consider frames of reference moving at speeds V1 and V2, and no students found another way to show that the boundary conditions were satisfied. Marks were given to students who started in broadly the right direction and explained what they were trying to do. Section (b) was answered perfectly by two students, who used the unsteady Bernoulli equation to integrate $p$ around the surface of the inner cylinder. Some students tried to integrate the kinetic energy over the volume of the fluid, which would probably work but was not successfully shown by anybody. Some students gave excellent physical explanations for the variation of added mass with a2/a1. Part (c) was well answered by six out of seven students, even if they had not answered (a) and (b) well.

## Question 4

## Flutter

This question was a standard flutter question and was answered well by many students. Around half the students showed a good physical understanding of the process. Sections (a), (b), and (d) were answered well by almost every student. In section (c), most students answered the first part well. Many said (correctly) that the centre of mass should move backwards but did not explain why. In (c) many students saw the relationship with flutter but only around one third explained this well.
Common errors were to state that the system would need to be unstable to flutter to obtain thrust, when the reverse is true. No student explained why, or commented that, the centre of mass must be forward. Some students wrote lengthy explanations about thrust and drag on the airfoil at different moments in the cycle but this was not required because it is implicit when describing this motion as the opposite of flutter.

4 AlD CRIBS 2023.
1

(a) Given frequency $\omega=\omega_{R}+i \omega_{I}, \quad i=\sqrt{-1}$ \& a travelling-wave disturbance of form

$$
\eta(x, t)=\hat{\eta} e^{i(k x-\omega t)}
$$

Thus,

$$
\begin{aligned}
I & =i(k x-\omega t) \\
& =i k x-i \omega t \\
& =i k x-i\left(\omega_{R}+i \omega_{I}\right) t \\
& =i\left(k x-\omega_{R} t\right)+\omega_{I} t
\end{aligned}
$$

so that

$$
\eta(x, t)=\eta e^{i\left(k x-\omega_{R} t\right)+\omega_{I} t}
$$

$\therefore \omega_{I}>0$ corresponds to exponential growth.
(b) Given the dispersion relationship $\omega(k)$ is

$$
\left(p_{1}+p_{2}\right) \omega-p_{2} U k= \pm[\underbrace{\left[p_{1}+p_{2}\right)|k|\left\{k^{2} \gamma+\left(p_{1}-p_{2}\right) g\right\}-p_{1} p_{2} U^{2} k^{2}}_{A}]^{1 / 2}
$$

Then

$$
\begin{aligned}
& \text { Then } \omega=\omega_{R}+i \omega_{I}=\frac{p_{2} u k \pm\left[\left(p_{1}+p_{2}\right)|k|\left\{k^{2} \gamma+\left(p_{1}-p_{2}\right) g\right\}-p_{1} p_{2} u^{2} k^{2}\right]^{1 / 2}}{p_{1}+p_{2}}
\end{aligned}
$$

and for exponential grow it the term under the square root must be negative, ie. we requires $A<0$, namely

$$
\begin{aligned}
& \quad p_{1} p_{2} u^{2} k^{2}>\left(p_{1}+p_{2}\right)|k|\left\{k^{2} \gamma+\left(p_{1}-p_{2}\right) g\right\} \\
& \text { i.e. } \quad \frac{p_{1} p_{2} u^{2}}{p_{1}+p_{2}}>\frac{|k|}{k^{2}}\left\{k^{2} \gamma+\left(p_{1}-p_{2}\right) g\right\}
\end{aligned}
$$

Enliven $k^{2}=|k||k|$, this is

$$
\frac{p_{1} p_{2}}{p_{1}+p_{2}} u^{2}>\left(p_{1}-\frac{\left.p_{2}\right) g}{|k|}+|k| \gamma\right.
$$

The magnitude of the RHS varies with $k$ \& so we require

$$
\frac{p_{1} p_{2}}{p_{1}+p_{2}} u^{2}>\min _{k}\left\{\left(p_{1}-p_{2}\right) \frac{g}{|k|}+|k| \gamma\right\}
$$

(c) Increasing surface tension $X$ and density difference between the lagers $\left(p_{1}-p_{2}\right)$ has a stabibing role on
1.
(d)

(e) To find the first wave to go unstable as $U$ increases, we need ford condition that minimises RUS of (1) over $|R|$

$$
\text { Now } \begin{aligned}
\frac{d}{d|k|} \text { RUS } & =\frac{d}{d|k|}\left\{\left(p_{1}-p_{2}\right) \frac{g}{|k|}+|k| \gamma\right\} \\
& =-\left(p_{1}-p_{2}\right) \frac{g}{|k|^{2}}+\gamma
\end{aligned}
$$

Setting to zero we have the fist wave to go unstable, i.e.

$$
|k|_{c}^{2}=k_{c}^{2}=\frac{g}{\Delta}\left(p_{1}-p_{2}\right)
$$

1
(f) We know the first wave to go unstable has

$$
k^{2}=\frac{g}{\Delta}\left(p_{1}-p_{2}\right)
$$

Sub. this into (1) gives

$$
\begin{aligned}
\frac{p_{1} p_{2}}{p_{1}+p_{2}} U^{2} & >\frac{\left(p_{1}-p_{2}\right) g}{\left(p_{1}-p_{2}\right)^{1 / 2}\left(g_{\gamma}\right)^{1 / 2}}+\left(p_{1}-p_{2}\right)^{1 / 2}\left(\frac{g}{x}\right)^{1 / 2} \gamma \\
& =2\left(p_{1}-p_{2}\right)^{1 / 2}(g \gamma)^{1 / 2}
\end{aligned}
$$

So that

$$
\mu^{2}>\frac{2\left(p_{1}+p_{2}\right)\left(p_{1}-p_{2}\right)^{1 / 2}(g \gamma)^{1 / 2}}{p_{1} p_{2}}
$$

Witt $\left\{\begin{array}{l}p_{1}=1000 \mathrm{~kg} / \mathrm{m}^{3} \\ p_{2}=1.25 \mathrm{~kg} / \mathrm{m}^{3} \\ \gamma=0.074 \mathrm{~kg} / \mathrm{s}^{2}\end{array}\right.$
$M_{\text {cit }}{ }^{2}=6.6 \mathrm{~m} / \mathrm{s}$, this, the mine wind speed to dive waves.

2 (a)
Considie a ring of fluici e radius $r_{1}$, circurfienbal velocity $\mu_{1}$

Neguiting vinion forces $s_{1} l_{1}=r_{2} l_{2}^{i}$ as angriat rion consermed

$$
\Rightarrow u_{2}{ }^{\prime}=\left(\frac{r_{1}}{r_{2}}\right) u_{1}
$$

As (Ciwer) $-\frac{1}{\rho} \frac{\partial \hat{i}}{\partial r}=-\frac{W_{i}^{2}}{r}$, the premuir grachert is juist surticiciot to beldi a ring witt veluaty $l_{2}$ at the radions $r_{2}$, theis
if $\frac{u_{\alpha}^{12}}{r_{2}^{2}}>\frac{U_{2}^{2}}{r_{2}^{2}}$, i.e. $U_{2}^{\prime 2}>U_{2}^{2}$ thou rochied pross grod. is nit
 This requivi $\quad u_{2}^{2^{2}} \leq u_{2}^{2} \quad$ for stability.

Suib. for $u_{2}^{\prime}=\left(r_{1} / r_{2}\right) L l$ grien

$$
\begin{aligned}
& r_{1}^{2} u_{1}^{2} \leqslant r_{2}^{2} u_{2}^{2} \quad \Rightarrow \quad r_{2}^{2} u_{2}^{2}-r_{1}^{2} u_{2}^{2} \geqslant 0 \quad\left(r_{1}>r_{2}\right) \\
& \text { i. } \quad \frac{d}{d r}\left(r^{2} u^{2}\right) \geqslant 0
\end{aligned}
$$

now $U=r \Omega 2$

$$
\Rightarrow \quad \frac{d}{d r}\left(r^{2} \Omega\right)^{2} \geq 0 \quad \text { as req. }
$$

2
$b$ (1) We expect growitt mate for jet (capillony) of dicinceterd, fintt surface tensian $\gamma, \quad \delta=\delta(d, \gamma, p, k)$
Now $S \sim[1 / T]$
$d \sim[L]$ jek diacreter
$k \sim[1 / L]$ wave muither of perturbation
$\rangle \sim\left[\mathrm{H} / \mathrm{L}^{3}\right]$ jer deroity
$X \sim\left[M L T^{-2} / L\right]$ only quariaty witt/ lio irchude dimensians of time
To obtain dimensionten growth rate, we need multiply by $s$
by quarkity with dimemsions of tive

$$
\begin{equation*}
X \sim\left[\frac{M}{T^{2}}\right] \quad \therefore \quad X^{1 / 2} \sim\left[\frac{M^{1 / 2}}{T}\right] \tag{i}
\end{equation*}
$$

Hence, $\quad S X^{-1 / 2} \sim\left[\frac{1}{T} \cdot \frac{T}{M^{1 / 2}}\right]$
Now $\quad \rho^{1 / 2} \sim \frac{M^{1 / 2}}{L^{3 / 2}}$
Thus, $\frac{S X^{-1 / 2}}{\rho^{1 / 2}} \sim\left[\frac{1}{T} \cdot \frac{T}{\mu^{1 / 2}} \frac{\mu^{1 / 2}}{L^{3 / 2}}\right]$ so that $\frac{S \rho^{1 / 2} d^{3 / 2}}{\delta^{1 / 2}} \sim[1]$
Cuver dimervinutes groutt rate deperds on dimensiantens waverunben

$$
S\left(\rho^{1 / 2} d^{3 / 2}\right)=f(k a)
$$

(ii) For Jek subjeit to axcirynuretric distantances:

From the laplace rerult $\Delta_{p}=\nabla \nabla \cdot \tilde{\sim}$

$=\Delta / r$ as capetlory force
enhaused capellary force at

novrowest region as locally ${ }^{r}$
simaller here $\Rightarrow$ flwis forced away frow neck $\Rightarrow$ rdecreases $\Rightarrow$ pirchoff

2
b (II) In otterwerdn jet unstable to asaizgnimenie perturbations

For jet subject to non-anaingurretric disturbances, eg. to mode 2 \& mode 4


in section
for $n=2$


Regions of pernister witt larger local $\nabla \hat{n}$ how locally higher capillary forces \& Tendency to restore section to original circular section, ie stabilising. eg.

 raving pin this Region.

2
(c) Consider werto done in moring particle uppard (againt bucyavey) - from levelz to level $x+a$ - ard work dove in masing diplaced pariticle down.

Worto done againit buayang

$$
I=\int F_{\text {bus }} \cdot d r
$$



Where buizangy force on partode of vol. $V$

$$
\therefore I=\int_{a=c}^{a=d x}-a(d p / d x) g V d a=\underline{-1 / 2(d z)^{2} d g / d z g V}
$$

(1) Werto done cim elvacitiong position $a=\delta z$

Coupare titas mith change in KE arnocicated witt partictes exchanging place.

$$
\begin{equation*}
K E_{\text {before }}=1 / 2 m_{1} u^{2}+1 / 2 m_{2}(u+\delta u)^{2}, \quad \text { Hatoz } M_{1} \approx M_{2}=p_{0} V \tag{2}
\end{equation*}
$$

Anumi partictes tajee moon vel.on exchanguig

$$
\begin{equation*}
k \text { Eaplen }=\frac{1}{2} m_{1}\left[\frac{u+(u+\infty)}{2}\right]^{2}+u_{2} m_{2}\left[\left(\frac{\mu+-\mu)+u)}{2}\right]^{2}\right. \tag{3}
\end{equation*}
$$


If moring the panticles releares enegy, thim would porvide enegy to fucl irstability.
So unshatle if

3
(a) In a frame of reference moving at speed $V$ the velocity potential is:

$$
\phi=\left(C_{1}-V\right) r \cos \theta+\frac{c_{2}}{r} \cos \theta
$$

The radial velocity is $u_{r}=\frac{\partial \phi}{\partial r}=\left(c_{1}-V\right) \cos \theta-\frac{c_{2}}{r^{2}} \cos \theta$
The radius, $a$, at which $u_{r}=0$ is given by

$$
a^{2}=\frac{c_{2}}{c_{1}-v}=\frac{\left(v_{2}-v_{1}\right) a_{1}^{2} a_{2}^{2}}{\left(v_{2}-v\right) a_{2}^{2}-\left(v_{1}-v\right) a_{1}^{2}}
$$

By inspection, $a=\left\{\begin{array}{l}a_{1} \text { when } v=v_{1} \\ a_{2} \text { when } v=v_{2}\end{array}\right.$
These are the required boundary conditions: When moving witt the inner cylinder at speed $V_{1}$ we require zero velocity a cos the inner cylinder. When moving with the outer cylinder at speed $V_{2}$ we require zero velocity accoss the outer cylinder.
(b) $V_{2}=0$ and $V_{1} \neq 0$. If $F$ is the horizontal force exerted (by the fluid) on the inner cylinder, it can be modelled as an added mass, $M$, if the fine can be expressed as $F=-M d V_{1} / d t$.


$$
\begin{aligned}
F=\int_{\theta=0}^{2 \pi}-p \cos \theta a_{1} d \theta & =\int_{0}^{2 \pi} \rho\left(a_{1}^{2} \frac{d c_{1}}{d t}+\frac{d c_{2}}{d t}\right) \cos ^{2} \theta d \theta \\
& =\pi \rho\left(a_{1}^{2} \frac{d c_{1}}{d t}+\frac{d c_{2}}{d t}\right)
\end{aligned}
$$

If $v_{2}=0$ then $\frac{d c_{1}}{d t}=\frac{-a_{1}^{2}}{a_{2}^{2}-a_{1}^{2}} \frac{d v_{1}}{d t}$ and $\frac{d c_{2}}{d t}=\frac{-a_{1}^{2} a_{2}^{2}}{a_{2}^{2}-a_{1}^{2}} \frac{d v_{1}}{d t}$

$$
\begin{aligned}
& \Rightarrow F=-\underbrace{-\pi \rho\left(\frac{a_{1}^{4}}{a_{2}^{2}-a_{1}^{2}}+\frac{a_{1}^{2} a_{2}^{2}}{a_{2}^{2}-a_{1}^{2}}\right)}_{M} \frac{d V_{1}}{d t} \\
& \Rightarrow M=\rho \pi a_{1}^{2}\left(\frac{a_{2}^{2}+a_{1}^{2}}{a_{2}^{2}-a_{1}^{2}}\right)=\rho \pi a_{1}^{2}\left(\frac{\left(a_{2} / a_{1}\right)^{2}+1}{\left(a_{2} / a_{1}\right)^{2}-1}\right)
\end{aligned}
$$

Set $\alpha \equiv\left(a_{2} / a_{1}\right)$ so that $\frac{M}{\rho \pi a_{1}^{2}}=\frac{\alpha^{2}+1}{\alpha^{2}-1}$
N.B. $\quad a_{2}>a_{1}$ so $\alpha>1$.
$\frac{M}{p \pi a_{1}{ }^{2}}$


As $a_{2} \rightarrow \infty$ the confinement due to the outer cylinder has progressively less infinence. The added mass tends towards that of a cylinder in an unconfined finid: $\rho \pi a_{1}^{2}$. As $a_{2} \rightarrow a_{1}$ the finid around the cylinder becomes move confined and has to move faster than it did when unconfined. The required langer change in momentum requires a larger fore for a given acceleration $d v_{1} / d t$ so the added mass in the model increases.
(c) The above sketch is the case for $\mathrm{Re}_{\mathrm{e}}=\infty$ and is a useful baseline for the next sketu.


As the viscosity increases the fluid exerts a larger fore on the cylinder for a given $d V_{1} / d t$ So the added mass increases.


As the viscosity increases the fluid dissipates mechanical energy. This dissipation scales with the velocity gradient so is greater when the velocity is greater, ie. as $\alpha \rightarrow 1$

4 (a) Assume $y=Y_{0} e^{s t}$ and $\theta=\theta_{0} e^{s t}$ and substitute into the equations of motion:

$$
\begin{aligned}
& m s^{2} y_{0}-s_{x} s^{2} \theta_{0}+b_{y} s y_{0}^{0}+k_{y} y_{0}=q \theta_{0} \\
& I_{\theta} s^{2} \theta_{0}-s_{x} s^{2} y_{0}+b_{\theta} s \theta_{0}+k_{\theta} \theta_{0}=c_{a} q \theta
\end{aligned}
$$

where $q=\left.\frac{1}{2} \rho \pi^{2} c \frac{\partial C_{L}}{\partial \theta}\right|_{\theta=0}$, which is positive for this shape.

Express as a nonlinear matrix eigenvalue problem:

$$
\left[\begin{array}{ll}
m s^{2}+k_{y} & -s_{x} s^{2}-q \\
-s_{x} s^{2} & I_{\theta} s^{2}+k_{\theta}-c_{a} q
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
\theta_{0}
\end{array}\right]=0
$$

For nontrivial solutions the determinant must be zen:

$$
\begin{gathered}
\Rightarrow\left(m s^{2}+k_{y}\right)\left(I_{\theta} s^{2}+k_{\theta}-c_{a} q\right)-s_{x} s^{2}\left(s_{x} s^{2}+q\right)=0 \\
\Rightarrow s^{4}\left(\underset{\substack{\text { (positiv e-see notes) } \\
\left(m I_{\theta}-s_{x}^{2}\right)}}{ }+s^{2}\left(m k_{\theta}-m c_{a} q+k_{y} I_{\theta}-s_{x} q\right)+\underset{c_{2}}{\left(k_{y} k_{\theta}-c_{a} k_{y} q\right)}=0\right. \\
c_{4}
\end{gathered}
$$

Solve for $s^{2}$ with the quadratic formula :

$$
s^{2}=\frac{-c_{2} \pm\left(C_{2}^{2}-4 c_{0} C_{4}\right)^{1 / 2}}{2 C_{0}}
$$

4
(b) If the system oscillates then $s$ has an imaginary part. If the osallations' grow from rest then $s$ has a positive real part. Therefore $s$ and $s^{2}$ must be complex. Therefor $4 C_{0} C_{4}>C_{2}^{2}$.
(c) When $b$ is positive, the system contains mechanical damping, so some paranction values that were nustable when $b=0$ become stable. The system will be unstable when $4 C_{0} C_{4}>C_{2}^{2}+\beta$, where $\beta$ is some positive number. ( $B$ could be derived but this is beyond the scope of this $Q$ )

The system becomes more susceptible to fintion when $C_{2}$ decreases. $q$ is positive, so this is achieved by increasing $S_{x}$, ie by moving the centre of mass further backward to wards the trailing edge.
(d) The energy comes from the mean flow doing work on the hydrofoil. This increases the crag on the hychofiri.
(e) When the system is unstable to flutter $(b \rightarrow d)$, work is dissipated in the clampers and there is increased elvag on the hychofoil. Comuossely, when the system is stable to flutter, the campus could be replaced with actuators in order to do work on the system and produce thrust. The surfer would need to move their centre of mass forward ( $S_{x}$ negative $\Rightarrow C_{2}$ large $\Rightarrow$ stable to flutter) and then bounce up and down (translational actuator) with one leg slightly earlier than the other (torsional actuation). ie. classic flutter motion but driven by the actuators rather than by the mean flow. See stills on next page.

https://www.youtube.com/watch?v=5XeskRF4jEA

