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Module 4A10

FLOW INSTABILITY

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.
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the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 One deep layer of inviscid fluid of density d2 flows with uniform horizontal speed
* in the G-direction over another deep layer of density d1 which is at rest. There is surface
tension W at the interface H = [(G, C) between the two fluids, C denoting time. A small
disturbance of the form

[(G, C) = [̂ 48(:G−lC)

travels on the interface, where [̂ is a constant. A linear stability analysis of this system gives
the following dispersion relationship for the frequency l as a function of the horizontal
wavenumber : of the disturbance

(d1 + d2) l − d2*: = ±
[
(d1 + d2) |: |

{
:2W + (d1 − d2) 6

}
− d1d2*

2:2
] 1

2

Take : to be real throughout.

(a) By writing l = l' + 8 l� , show that l� > 0 corresponds to an exponential growth
in time of the disturbance on the interface. [10%]

(b) Using the dispersion relation given above, show that the condition for the exponential
growth may be written

d1d2
d1 + d2

*2 > min
:

{
(d1 − d2)

6

|: | +|: |W
}

[30%]

(c) Comment on the role of the surface tension and the density difference on the stability
of the system. [10%]

(d) With reference to the condition in (b) or otherwise, sketch the associated ‘stability
loop’ in *-|: | space. Label the regions for linearly stable and unstable flows. Label any
other salient features of note. [10%]

(e) Show that as* increases, the first wave to go unstable has :2 = 6(d1 − d2)/W. [20%]

(f) Calculate the wind speed necessary to drive waves on the surface of an otherwise
stationary freshwater lake. Take the density of fresh water as 1000 kg/m3, the density of
air as 1.25 kg/m3, and the surface tension to be 0.074 kg/s2. [20%]
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2 (a) A liquid fills the annular gap formed between two long concentric cylinders.
The inner cylinder of radius A1 rotates about its vertical axis with angular velocityΩ1. The
outer cylinder of radius A2 rotates with angular velocity Ω2 about the same axis. You may
take Ω1 > 0, Ω2 > 0 and A2 > A1. Consider the stability of this Taylor-Couette problem
and show that stability for an inviscid fluid requires

3

3A

[
(ΩA2)2

]
≥ 0

where Ω denotes the angular velocity at a radial distance A from the vertical axis. [35%]

(b) Consider a slender incompressible cylindrical liquid jet of density d propagating
horizontally in air. You may assume that the diameter 3 of the jet is sufficiently small that
surface tension W cannot be neglected. The jet is subject to a small amplitude perturbation.

(i) Use dimensional arguments to develop a scaling for the growth rate B of the
perturbation.

(ii) By considering sections through the jet perpendicular to its longitudinal axis,
discuss with clear physical reasoning the stability of the jet to both axisymmetric
and non-axisymmetric disturbances. To support your discussion provide clearly
labelled schematics that illustrate the jet for circumferential wavenumbers of = = 2
and = = 4. [35%]

(c) A fluid subject to a horizontal velocity D(I) is initially stably stratified with a
smoothly varying density profile d(I), where I denotes the vertical coordinate. Assuming
3D/3I > 0, develop an energy-based argument to show that the flow is unstable for

−6
d0

3d

3I
<

1
4

(
3D

3I

)2

where 6 is the acceleration due to gravity and d0 is a reference density. [30%]
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3 A cylinder with radius 01 moving horizontally at speed +1 is placed concentrically
inside a cylinder with radius 02 moving horizontally at speed +2, as shown in Fig. 1. For
small displacements of the cylinders, the velocity potential of the inviscid incompressible
flow between the cylinders is

q = 21A cos \ + 22
A

cos \ where 21 =
+20

2
2 −+10

2
1

02
2 − 0

2
1

and 22 =
(+2 −+1)02

10
2
2

02
2 − 0

2
1

(a) By considering frames of reference moving at speeds +1 and +2, or otherwise, show
that this flow satisfies the necessary boundary conditions. [20%]

(b) The outer cylinder is held stationary while the inner cylinder is vibrated with a
sufficiently small displacement that the above velocity potential is accurate and that the
unsteady Bernoulli equation can be written

? = ?∞ − d
mq

mC

Derive an expression for the added mass of the inner cylinder and sketch this as a function
of 02/01. Explain this variation on a physical basis. [50%]

(c) Describe, with the aid of sketches, how and why the added mass and added damping
will vary with 02/01 and with the viscosity of the fluid. [30%]

Fig. 1
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4 A hydrofoil with chord 2, mass per unit length <, and lift coefficient �! (\), is
attached to a wall by two identical translational spring/damper systems as shown in
Fig. 2(a). The springs have stiffness : and damping coefficient 1. The two systems are
separated by a distance 3. This arrangement is placed in water of density d flowing at
velocity *. This can be modelled by a single translational spring with stiffness :H = 2:
and damping coefficient 1H = 21, combined with a single torsional spring with stiffness
:\ = :32/2 and damping coefficient 1\ = 132/2, as shown in Fig. 2(b). The springs
attach to the hydrofoil on the elastic axis. The aerodynamic centre of pressure is a distance
20 upstream of the elastic axis. The centre of mass is a distance (G/< downstream of the
elastic axis. For vertical displacement, H, and angular displacement relative to the flow
direction, \, the translational and torsional equations of motion are

< ¥H − (G ¥\ + 1H ¤H + :HH = �H

�\ ¥\ − (G ¥H + 1\ ¤\ + :\\ = �\

where �\ is the moment of inertia about the elastic axis, �H (positive upwards) is the flow-
induced vertical force and �\ (positive clockwise) is the flow-induced moment resolved
around the elastic axis. �H and �\ can be modelled with

�H =
1
2
d*22

m�!

m\

����
\=0

\ = @\

�\ = 20�H

(a) (b)

Fig. 2
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(a) Assuming that perturbations to H and \ are proportional to exp(BC), with C denoting
time, and setting 1 = 0, show that [30%]

B2 =
−�2 ± (�2

2 − 4�0�4)1/2

2�0

where �0 = <�\ − (2
G

�2 = <:\ + �\:H − @20< − @(G
�4 = :H:\ − @20:H

(b) Find the condition on �0, �2, and �4 at which the system will start to oscillate from
rest (flutter). [10%]

(c) Without further calculations, describe how the condition in (b) will change when
the damping coefficient, 1, is positive. How could the centre of mass be moved to make
the system more susceptible to flutter? [20%]

(d) When fluttering with 1 ≠ 0, energy is dissipated in the dampers. Where does this
energy come from? What happens to the drag on the hydrofoil when it starts to flutter? [10%]

(e) A hydrofoil board is a short surf board attached to an underwater hydrofoil as shown
in Fig. 3. With reference to your previous answers, but without further calculations,
describe how a surfer could propel the board forwards in stagnant water. [30%]

Fig. 3
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