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 ENGINEERING TRIPOS PART IIB 

  

______________________________________________________________________ 

 

 Thursday 28 April 2022        2 to 3.40 

______________________________________________________________________ 

 

 

 Module 4A12 

 

 TURBULENCE AND VORTEX DYNAMICS 

 

 Answer not more than three questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Engineering Data Book  

4A12 Turbulence and Vortex Dynamics Data Card (3 pages). 

    

 

10 minutes reading time is allowed for this paper at the start of 

the exam. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 

 

You may not remove any stationery from the Examination Room. 
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1 The curl of the shear flow (shear) ˆ( , )z zu y t=u e  gives the vortex sheet 
 

    ( )
2

ˆ( , ) exp xy t y 


  = −
 

ω e ,    

where ˆ
xe  and zê  are unit vectors associated with the coordinates (x, y, z), ( )t  is the 

characteristic thickness of the sheet, and   is the flux of vorticity per unit width of the 

sheet, 

     xdy


−
 =  . 

(a) Show that the vorticity equation, 
 

      ( ) ωuω
ω 2+= 

Dt

D
, 

reduces to the diffusion equation for this configuration. Explain why, without any 

mathematics,   grows as ~ t   while   remains a constant. [10%] 

 

(b) This vortex sheet is now immersed in the straining flow (strain) ( , ,0)x y = −u , 

where   is a constant.  
 

 (i)  Show that )strain(u  is both solenoidal and irrotational and sketch the vortex 

sheet and the straining flow.   [10%] 

 (ii)  Confirm that, for an appropriate choice of  , say  = , the vortex sheet 

constitutes a steady solution of the vorticity equation and find the relationship 

between  ,   and   that ensures the vortex sheet remains steady.  [40%] 

 (iii) What physical processes must balance in order to realise this steady 

configuration.  [10%] 

 

(c)   The vortex sheet is immersed in the steady straining flow 
(strain) ( , ,0)x y = −u  

but the initial value of   is not equal to  . The thickness of the sheet is then a function 

of time and evolves in accordance with the evolution equation  
 

     
2

22 4
d

dt


 + = . 

 

(i)  Find the general solution of this equation and show that, irrespective of the 

initial value of  , say 0 , the thickness of the sheet tends to   at large times. [20%] 

 (ii)  Explain physically why the thickness of the sheet always tends to  . [10%] 
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2  (a) A Bödewadt layer forms on the bottom of a teacup containing spinning tea. 

 

(i) Sketch the secondary flow pattern in the Bödewadt layer, both from the side 

and from above, and explain the physical origin of the secondary flow.  [15%] 

(ii) Use dimensional analysis to show that the boundary layer thickness is of the 

order of  , where   is the rotation rate and   is the kinematic viscosity of 

the tea. [15%] 

(iii) By considering the trajectory of a typical fluid particle, explain why Ekman 

pumping is the mechanism by which the tea stops spinning. Use continuity to 

estimate the vertical velocity in the teacup and hence estimate the spin-down time 

in terms of Ω,   and the radius of the cup. [15%] 

  

(b) Water is pumped through a helical duct of square cross-section, as shown in Fig. 

1. The duct has side h and the inner and outer radii of the duct are / 2R h−  and 

/ 2R h+ . The pitch of the duct is small, the flow is laminar, and the primary motion can 

be approximated by ru =  in cylindrical polar coordinates, where r is the distance 

from the axis of the helix. 

 

 (i) Sketch the secondary flow pattern in the duct and estimate the magnitude of 

the radial velocity in the core of the duct in terms of Ω, h, R and  . [15%] 

 (ii) If  R = 10h, the length of the duct is L = 300h, and the Reynolds number is  
2 4Re 10R =  = , estimate how many times a typical fluid particle is cycled 

through the Bödewadt layers before leaving the duct. [20%] 

 (iii) By considering the trajectory of a typical fluid particle within the duct, 

explain why the viscous dissipation of energy in the duct is dominated by Ekman 

pumping. Find the relationship between the pressure gradient along the axis of the 

duct and the net rate of viscous dissipation per unit area of the Bödewadt layers. [20%] 

 

 

 
Fig. 1 
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3  (a) By dimensional arguments or otherwise, derive the decay rate of the 

turbulent kinetic energy spectrum in the inertial subrange. Discuss carefully the 

assumptions made.  [40%] 

  

(b) Discuss the physical arguments that lead to the model for the scalar dissipation 

rate given in the Data Card. State clearly the underlying assumptions and discuss their 

range of validity. [30%] 

 

(c) Assume that the wind approaching a wind turbine pillar is a homogeneous 

isotropic turbulent flow with unidirectional mean velocity. Ignore the effect of the 

pillar's structure on the flow and assume that the instantaneous load at a point is 

proportional to the instantaneous wind speed (mean plus fluctuation). Derive an 

expression for the expected fastest frequency of the temporal fluctuation of the load. [30%] 
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4  (a) Consider a planar turbulent jet in stagnant surroundings. Sketch the 

distributions of the Reynolds stresses across the jet in the self-preserving region. By 

considering the production terms for the individual normal Reynolds stresses or 

otherwise, discuss whether we expect the turbulence along the axis of symmetry to be 

isotropic or not. Explain your reasoning. [40%] 

  

(b) Discuss carefully the reasons for the generation of velocity fluctuations in the 

outer regions of a thin shear flow. [30%] 

 

(c) Consider a turbulent round axisymmetric jet. The characteristic lengthscale of the 

jet grows as x
1
, where x is the streamwise distance from the nozzle, and the mean 

centreline velocity decays as x−
1
. Find how the jet mass and momentum flow rate 

change with x. [30%] 

 

 

 

END OF PAPER 
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