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ENGINEERING TRIPOS PART IIB

Thursday 27 April 2023 2 to 3.40

Module 4A12

TURBULENCE AND VORTEX DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
4A12 Data Card (3 pages)
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Page 1 of 6



Version EM/3

1 (a) Discuss the budget of the turbulent kinetic energy 𝑘 across a flat-plate turbulent
boundary layer, using appropriate sketches and by reference to the terms in the transport
equation for 𝑘 . [50%]

(b) The simplified governing equation for the streamwise mean velocity𝑈 in a flat-plate
boundary layer is given by

𝑈
𝜕𝑈

𝜕𝑥
+𝑉 𝜕𝑈

𝜕𝑦
= a

𝜕2𝑈

𝜕𝑦2 − 𝜕𝑢′𝑣′

𝜕𝑦

where the symbols have their usual meaning. Starting from the above equation, derive
the log-law of the wall for the logarithmic layer. Justify all assumptions and modelling
choices you make. [50%]

Page 2 of 6



Version EM/3

2 At time 𝑡 = 0, a homogeneous isotropic turbulent flow with zero mean velocity has
turbulent kinetic energy 𝑘 = 𝑘0 and integral lengthscale 𝐿 = 𝐿0. The scalar fluctuation
variance, 𝜎2, is initially equal to 𝜎2

0 .

(a) Assuming that 𝑘 and 𝐿 remain constant, find the time when the scalar fluctuation
variance has decayed to 0.1𝜎2

0 . [30%]

(b) Assume that the integral lengthscale remains constant. Derive an expression for the
decay of 𝑘 . [30%]

(c) By considering the Y equation from the 𝑘–Y model as applied to this problem, and
assuming the decay of 𝑘 in part (b), derive an expression for the evolution of 𝐿. [40%]
.
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3 (a) Sketch the primary and secondary flow patterns associated with the Karman
and Bödewadt boundary layers. [10%]

(b) Show that the radial force balance in a Karman layer yields

𝑢2
\

𝑟
∼ a

𝑢𝑟

𝛿2

in (𝑟, \, 𝑧) coordinates, where a is the kinematic viscosity, u the velocity field, and 𝛿 the
boundary layer thickness. Use this to estimate the boundary layer thickness on a rotating
disc in terms of a and the disc rotation rate, Ω. [15%]

(c) Write down the equivalent force balance for a Bödewadt layer and hence explain the
origin of the secondary flow in a Bödewadt layer. You should assume that the fluid outside
the Bödewadt layer rotates uniformly at the rate Ω 𝑓 𝑙𝑢𝑖𝑑 . [20%]

(d) The axial velocity outside a Karman layer is |𝑢𝑧 | = 0.885
√
aΩ , while that outside

a Bödewadt layer is |𝑢𝑧 | = 1.35
√︁
aΩ 𝑓 𝑙𝑢𝑖𝑑 . Deduce the scaling law |𝑢𝑧 | ∼

√
aΩ for a

Karman layer, or else |𝑢𝑧 | ∼
√︁
aΩ 𝑓 𝑙𝑢𝑖𝑑 for a Bödewadt layer, using continuity and the

results of part (b). [15%]

(e) Two large, parallel discs of radius 𝑅 share a common axis and the gap between them
is filled with oil. The upper disc rotates at Ω𝑑𝑖𝑠𝑐 while the lower disc is stationary. The
gap between the discs, ℎ, is much smaller than 𝑅 but much larger than the thickness of the
boundary layers on the discs. Outside the boundary layers, the oil rotates uniformly at the
rate Ω𝑜𝑖𝑙 , which is less than Ω𝑑𝑖𝑠𝑐, and the flow is laminar. Sketch the secondary flow in
the gap and show that Ω𝑜𝑖𝑙 = 𝑐Ω𝑑𝑖𝑠𝑐, where 𝑐 is a constant. What is the numerical value
of 𝑐? [20%]

(f) Show that the torque, 𝑇 , transmitted to the lower disc in part (e) scales as
𝑇 ∼ 𝜌

√︁
aΩ𝑑𝑖𝑠𝑐 Ω𝑑𝑖𝑠𝑐 𝑅4. [20%]
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4 (a) Write down the vorticity equation for a viscous fluid and briefly explain what
each term represents. [10%]

(b) A short line element, 𝑑r , which links two material points in the fluid, is governed
by the evolution equation

𝐷

𝐷𝑡
𝑑r = (𝑑r · ∇)u

where u is the velocity field. Use this to deduce Helmholtz’s first law of inviscid vortex
dynamics. [10%]

(c) A vorticity field, 𝝎(x, 𝑡), in an inviscid fluid consists of two, thin vortex tubes. The
tubes are interlinked and they have centrelines 𝐶1 and 𝐶2 and vorticity fluxes Φ1 and Φ2.
The vortex tubes create a velocity field u and the net helicity of this flow is defined as
𝐻 =

∫
u · 𝝎𝑑𝑉 , where the integral is taken over all space.

(i) Show that 𝐻 can be rewritten in terms of line integrals, as

𝐻 =

∮
𝐶1

u · (Φ1𝑑r) +
∮
𝐶2

u · (Φ2𝑑r)

[10%]

(ii) Use Stokes’ theorem to show that 𝐻 = ±2Φ1Φ2 and explain when the minus
sign is appropriate. Also, show that, if the tubes are not linked, then 𝐻 = 0. [15%]

(iii) Use Helmholtz’s two laws of inviscid vortex dynamics to explain why 𝐻 is an
invariant of the motion. [15%]

(iv) In a real fluid, 𝐻 is only conserved for a short period of time. Explain why
this is so. [10%]

(d) Show that, in an inviscid fluid, the helicity density, u · 𝝎, is governed by

𝐷

𝐷𝑡
(u · 𝝎) = (𝝎 · ∇)

(
𝑢2

2
− 𝑝

𝜌

)
where 𝑝 is pressure and 𝜌 is density. Use this to construct an alternative proof that 𝐻 is
conserved. [30%]

END OF PAPER

Page 5 of 6



Version EM/3

THIS PAGE IS BLANK

Page 6 of 6








