4A12 Examiner's comments:

Question 1: The stretching and diffusion of vortex tubes

All students attempted this question and the overall performance was good. Most mistakes
occurred in part c(i), which was quite challenging.

Question 2: Helmholtz’s laws and Kelvin’s Theorem
All students attempted this question and most answered it well. Some students had problems
with the proof in part (b).

Question 3: The decay of turbulence

Part (a) of this question needed a deep understanding of turbulent kinetic energy balances to
answer correctly, while part (b) was straightforward book-keeping. Part (c) was answered
relatively poorly as few recognised that production is limited to close to the surface.

Question 4: Self-preservation applied to thin shear layers
A relatively straightforward question largely based on the lecture notes. However, the parts
that needed critical thought were not answered well in general.
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(a) We assume stationary homogenous isotropic turbulence, with no production

mechanism other than the distributed body force due to the cars’ drag. Each car
experiences a drag force equal to F = %pVZCdA, where A is the frontal area of the
vehicle. NFV is the total power injected to the air from all traffic, which means that the
total kinetic energy per unit time injected to the city’s air per unit mass is P, =
(N -;-CdApVZV)/(pHLW). Since the turbulence is stationary, the turbulent kinetic

energy dissipation must balance Pi,, and with the usual model for dissipation, we get

_ Ul NCaApV?v _ . . - .
that e = Py, & B apHLW This gives that the characteristic turbulent velocity

1/3
chA) ) . .
ToLw V . (Note: as always in turbulence, it is

interesting to do an order of magnitude check on whether this estimate may be realistic
or not. Say that L=W=5 km, N=1000, C4=0.3, A=2m?, numbers that look reasonable for
city traffic. This gives that u~0.013V. This is perhaps too low; we should expect
something closer to V, given what we know about the turbulence in thin shear flows,
thinking in terms of the wake behind each car. The reason is that we are distributing
this turbulence across the whole of the city’s air, i.e. across the whole height H. This is
what is discussed in Part c of this question.)

fluctuations are given by u =(

(b) If traffic suddenly stops, we have decaying turbulence that obeys % =—&S—=

()

dt
3/2
_ET—’ where L is the turbulent lengthscale, assumed constant. This can be easily

integrated to give k as a function of time. The result is 2L(k/2 — k(l,/ %) = t, with ko the
initial kinetic energy, which can be expressed as k£ = (1+t/Ty)"%, where Ty = L/ [k,
0

is the initial eddy turnover time.

The assumption that the lengthscale is constant needs discussion. As can be seen in the
k-€ model (in the Data Card), the equation for the dissipation also includes k: in

2
homogeneous turbulence, the g-equation becomes % = —1.92 % This means that the

lengthscale (equal to k2/g) is changing during the decay, in principle. To find out how
exactly, we need a simultaneous solution of k and & which cannot be done easily
analytically. Measurements of the decay rate of k and of the changes of L with time
have led to the value of the empirical constant 1.92 in the k-¢ model. Therefore, since
dissipation will be decaying during the decay, the rate of change of k will be different
than our analysis in Part (b); it will actually be slower.

In our city traffic problem, we have a body-force generation mechanism, but this is
limited to the surface, over a few m only associated with the vehicle’s wake. We
therefore have significant generation of turbulence only in part of our domain; the
turbulence will have to diffuse upwards to fill the city’s air up to height H. In reality, k
will be much higher closer to where the traffic is and lower at larger heights above the



Q

ground. If you think of a wake behind each car, the characteristic velocity of the wake is
V, which means that the characteristic turbulence intensity must be of the order of a
fraction of V, around 0.1-0.2V, typical of thin shear flows.



QA
(a) Self-preservation is a term that relates to the empirical finding, and the associated

mathematical model, that in thin shear flows the turbulence and mean flow are always
in an equilibrium mode at each downstream location, such that the turbulent velocity
fluctuations are always a constant fraction of the characteristic velocity scale at each
downstream location, and the large-eddy lengthscale scales with distance downstream.
Cross-stream distributions, when normalised by the centreline values, look the same
across all downstream locations. Hence we can write that for all mean quantities

(stream wise velocity, cross stream velocity, Reynolds stresses, scalars etc) we have
expressions such as: U(x,y) = U, (x)F; (’E') ;V(x,y) = U.(X)F, (%); u'u'(x,y) =

U.(x)Gy4 (%) ; etc. , where § is the characteristic thickness of the flow (5 depends on x).

(b) Key points in the diagrams below: (i) Mean velocity like an error function; (ii)
streamwise turbulence higher than cross-stream components because the streamwise
is the one that is produced by the shear, the other components are finite due to the

pressure redistribution terms in the normal Reynolds stress equations; (iii) Reynolds

stress is opposite to the sign of dU/dy and hence shown as -ve here.




(c) The typical large eddy lengthscale L will be a fraction of 0.1m, but not too small a
fraction, say 0.4 x 0.1m, i.e. 0.04m. The characterictic turbulent velocity can be
estimated to be of order 0.1-0.2U, with U=(20-10) m/s, i.e. u~2m/s. The order of
magnitude of the dffusivity can be estimated as 0.1uL, hence 0.008 m?/s (using the

lower estimate of U/U.). The kinematic viscosity of air at atmospheric conditions is

1.5x10° m?%/s, therefore the turbulence diffusivity is ~500 larger than the molecular one.
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