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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 3 May 2022 9.30 to 11.10

Module 4A15

AEROACOUSTICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4A15 Aeroacoustics data sheet (5 pages)
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Power lines sometimes ‘sing’ in windy conditions because, when the wind flows
transversely to the wire, it can induce a periodic stream of vortices downstream of the
wire. The periodic vortex stream generates a periodic force that produces sound. Assume
that the force per unit length exerted by the wire on the fluid has a magnitude of f cos(ωt)
in a direction perpedicular to the flow, where ω is the angular frequency, and the wire
can be treated as spatially compact in all directions, and thus a point source. Let L be the
length of the wire (into the page).

(a) Show that the farfield sound generated by the wire is given by

p′(x, t) =− 1
4π

Lcosθ

r
ω

c0
f sin(ω(t− r/c0)),

where c0 is the speed of sound, r = |xxx| and θ is the angle between xxx and fff (see Fig. 1). [70%]

(b) Find the time-averaged power of the sound radiated by the wire. [20%]

(c) Would this result be valid for any value of L? Explain your answer. [10%]

f x

θ

Fig. 1
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2 A conical horn is attached to a cylindrical duct to increase the sound transmission
out of the duct, as shown in Fig. 2. Assume that the waves propagating in the duct are
plane with angular frequency ω , and in the horn are segments of spherical waves that
originate from a virtual apex, A. The distance of A from the connection between the duct
and the horn is r0. The terminating impedance of the duct can be assumed to be the
impedance presented by the waves in the horn.

(a) Show that the terminating impedance of the duct is given by

Z = ρ0c0
i kr0

1+ i kr0
,

where k = ω/c0 and ρ0 and c0 are mean density and speed of sound, respectively. [40%]

(b) The reflection coefficient, R is defined as the ratio of the amplitude of the reflected
wave to the incident wave. Show that, for waves travelling down the tube toward the horn,
R =−1/(1+ i 2kr0) [40%]

(c) Using the result in part (b), comment on the effectiveness of the horn in aiding the
transmission of the waves out of the cylindrical duct. [20%]

r0
A

Fig. 2
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3 (a) Explain the meaning of the term “cut-off” in connection with acoustic modes
in a duct. [20%]

(b) A 3-bladed fan of diameter 300 mm is to be operated in a cylindrical duct of circular
cross-section of the same diameter. Table 1 shows the values of zmn, the mth zero of
dJn(z)/dz, where Jn is the nth order Bessel function of the first kind. For |n| > 6, use
z1n ≈ |n|+ 0.80861|n|1/3. Use the data in Table 1 to determine Rmax, the maximum
number of revolutions per minute if all rotor-alone modes are to be cut-off at atmospheric
conditions. Formulae on the data sheet may be used without proof. [40%]

(c) The fan rotor in (b) is operated at 10,000 rpm. Choose a suitable number of blades
for a downstream stator row, explaining clearly the reasons for your choice. With your
choice of stator blade number which, if any, of the rotor-stator interaction modes at the
blade-passing frequency (bpf) and at 2 bpf propagate? [40%]

n = 0 n =±1 n =±2 n =±3 n =±4 n =±5 n =±6
m = 1 0.00000 1.84118 3.05424 4.20119 5.31755 6.41562 7.50127
m = 2 3.83170 5.33144 6.70613 8.01524 9.28240 10.51986 11.73494
m = 3 7.01558 8.53632 9.96947 11.34592 12.68191 13.98719 15.26818
m = 4 10.17346 11.70600 13.17037 14.58585 15.96411 17.31284 18.63744
m = 5 13.32369 14.86359 16.34752 17.78875 19.19603 20.57551 21.93172

Table 1
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4 To attenuate sound of angular frequency ω travelling as plane waves in a duct of
cross-sectional area S, a Helmholtz resonator with volume V is connected to the side wall,
as shown in Fig. 3. The neck of the resonator has a length l and cross-sectional area A.
Show that the transmission loss, LT , is given by

LT = 10log10

(
|I|2

|T |2

)
= 10log10

(
1+

1
4S2

(
c0

ωV
− ωl

c0A

)−2
)

where I and T are the strengths of the incident and transmitted waves and c0 is the speed
of sound. [100%]

Hint: apply conditions of 1) continuity of mass flow rate into and out of the control volume
across the neck of the Helmholtz resonator and the duct upstream and downstream of it,
and 2) matching of pressure at x = 0.

  17

 where I and T are the strengths of the incident and transmitted waves. LT , the ratio of the 

incident to transmitted energy flow rates is called the transmission loss. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 7 A volume-resonator silencer. 

Hint: apply conditions of 1) continuity of mass flow rate into and out of the control 

volume across neck of the Helmholtz resonator and the duct upstream and downstream of 

it, and 2) matching of pressure at x = 0. 

Although this is just a simple theory it agrees well with experimental data:  

 

  
 
  

cross-sectional 
area S 

Figure 8 Experimental results for different 
resonators with the same resonance frequency, 

different bulb volumes V from Davies et al.  
NACA report 1192 (1954).  

The theoretical curves are from equation (1.22). 
 

Fig. 3

END OF PAPER
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Module 4A15 Aeroacoustics Data Sheet

USEFUL DATA AND DEFINITIONS

Physical Properties
Speed of sound in an ideal gas

√
γRT , where T is temperature in Kelvins

Units of sound measurement

SPL (sound pressure level) = 20log10

(
p′rms

2×10−5Nm−2

)
dB

IL (intensity level) = 10log10

(
intensity

10−12watts m−2

)
dB

PWL (power level) = 10log10

(
sound power output

10−12watts

)
dB

Definitions
Surface impedance Zs, relates the pressure perturbation applied to a surface, p′,

to its normal velocity v′; p′ = Zsv′

Characteristic impedance of a fluid ρ0c0

Specific impedance of a surface Zs/(ρ0c0)

Wavenumber k = ω/c0 = 2π/λ , where λ is the wavelength

Helmholtz number (or compactness ratio) = kD, where D is a typical dimension
of the source.

Strouhal number = ωD/(2πU) for sound of frequency ω (in rad/s), produced
in a flow with speed U , length scale D.

Basic equations for linear acoustics
Conservation of mass

∂ρ ′

∂ t
+ρ0∇ ·v′ = 0
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Conservation of momentum

ρ0
∂v′

∂ t
+∇p′ = 0

Isentropic

c2
0 =

d p
dρ

∣∣∣∣
S

Wave equation
1
c2

0

∂ 2 p′

∂ t2 −∇
2 p′ = 0

Energy density

e =
1
2

ρ0v′2 +
1

2ρ0c2
0

p′2

Intensity I = p′v′

Velocity potential φ ′ satisfies the wave equation and p′ =−ρ0
∂φ ′

∂ t , v′ = ∇φ ′.

Autocorrelation F(ξ ), the autocorrelation of f (y) is given by

F(ξ ) = f (y) f (y+ξ )

F(0) = f 2

Integral length scale, l

l f 2 =
∫

∞

−∞

F(ξ )dξ

Sound power
Sound power from a source is defined as

P =
∫

S
Ī ·dS =

∫
S∞

p′2

ρ0c0
dS

for a statistically stationary source. For an outward propagating spherically sym-

metrical sound field P = p′2
ρ0c0

4πr2, where p′ is the acosutic pressure at radius r.
For a sound field, which is a function of spherical polar coordinates r,θ only,

and is independent of the azimuthal angle,

P = 2πr2
∫

π

0

p′2

ρ0c0
sinθdθ
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Simple wave fields

1D or plane wave
The general solution of the 1D wave equation is p′(x, t) = f (t − x/c0) + g(t +
x/c0), where f and g are arbitrary functions. In a plane wave propagating to the
right p′ = ρ0c0u′; in a plane wave propagating to the left p′ = −ρ0c0u′, u′ being
the particle velocity.

Spherically symmetric sound fields
The general spherically symmetric solution of the 3D wave equation is

φ
′(r, t) =

f (t− r/c0)

r
+

g(t + r/c0)

r
,

where r is the distance from the source; f and g are arbitrary functions.

cosθ dependence
The general solution of the 3D wave equation with cosθ dependence is

p′(x, t)=
∂

∂x

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]
= cosθ

∂

∂ r

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]

Useful mathematical formulae

Spherical polar coordinates (r,θ ,ψ)

Gradient
∇p′ =

(
∂ p′

∂ r
,
1
r

∂ p′

∂θ
,

1
r sinθ

∂ p′

∂ψ

)
Divergence

∇ ·v′ = 1
r2

∂

∂ r

(
r2v′r

)
+

1
r sinθ

∂

∂θ

(
sinθv′θ

)
+

1
r sinθ

∂v′
φ

∂ψ

Laplacian

∇
2 p′ =

1
r2

∂

∂ r

(
r2 ∂ p′

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ p′

∂θ

)
+

1
r2 sin2

θ

∂ 2 p′

∂ψ2
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Delta functions

Kronecker Delta

δi j =

{
1 i = j
0 i 6= j

1D δ -function δ (x) = 0 for x 6= 0 and
∫

∞

−∞
δ (ax−b) f (x)dx = f (b/a)/|a|

3D δ -function δ (x) = δ (x1)δ (x2)δ (x3)

Convolution algebra

Convolution of f (x) and g(x)

( f ?g)(x) =
∫

∞

−∞

f (y)g(x−y)dy

Commutative properties
f ?g = g? f

∂

∂xi
( f ?g)(x) = f ?

∂g
∂xi

=
∂ f
∂xi

?g

Green’s function

3D Green’s function for wave equation(
∂ 2

∂ t2 − c2
0∇

2
)

g(x, t|y,τ) = δ (t− τ)δ (x−y)

g(x, t|y,τ) = δ {|x−y|− c0(t− τ)}
4πc0|x−y|

Lighthill’s Acoustic Analogy
Lighthill’s equation (

∂ 2

∂ t2 − c2
0∇

2
)

ρ
′ =

∂ 2Ti j

∂xi∂x j
.

For cold, isentropic, low Mach-number jets, Ti j can be approximated as:

Ti j = ρ0uiu j
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Lighthill eight power law Acoustic power,

Pa ∼
ρod2

j

c5
0

u8
j ,

where d j and u j are the jet exit diameter and velocity, respectively.

In a cylindrical duct of radius a

The pressure field is given by

p′(x, t) = ei(ωt+nθ)Jn(zmnr/a)(Ae−ikx3 +Beikx3),

where zmn is the mth zero of J̇n(z) and k = (k2
0− z2

mn/a2)1/2.

For large azimuthal wavenumber, n

z1n ≈ n+1.85n1/3

In a duct of varying area A(x)

Webster horn equation

1
c2

0

∂ 2 p′

∂ t2 −
1
A

∂

∂x

(
A

∂ p′

∂x

)
= 0

Modified Webster horn equation ψ(x) = p̂(x)A1/2, A = πa2

d2ψ

dx2 +

(
k2− 1

a
d2a
dx2

)
ψ = 0
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