4A15 Examiner's comments:

Q1 Oscillating sphere

The question was answered well by most candidates. It is similar to an example problem. The difference is that the boundary condition is on pressure instead of velocity. This confused some candidates.

Q2 Helmholtz resonator

A popular question. Most candidates did not take the effective length into account for part (b), and got the resonance frequency wrong by an order of magnitude. Almost all students got part (c) wrong. It turns out that the dimensions of the coke can are not really much smaller than the acoustic wavelength (an assumption that most candidates listed as an answer to part (a)), so the Helmholtz formula is not accurate here.

Q3 Multipole expansion
The least popular question, with a wide range of responses. Some were unfamiliar with multipole expansion. Some failed to realise that the strength of a dipole must be a vector. Several failed to use the correct Greens function for the Helmholtz equation, instead trying to use the Greens function for the wave equation. It is possible to derive the Greens function for the Helmholtz equation from that for the wave equation, but only one candidate succeeded in this.

Q4 Webster horn equation
A reasonably popular question. Some failed with bookwork to derive the Webster horn equation. Quite a few failed to spot that $0.5\left(1+\cos \left(2^{*} \mathrm{a}^{*} \mathrm{x}\right)\right)=\cos \left(\mathrm{a}^{*} \mathrm{x}\right)^{\wedge} 2$, but succeeded otherwise with part (b). This affected their ability to come up with a simple answer for part (c), but the principle was mostly understood. Quite a few failed to notice that if alpha is taken to be imaginary, then the shape of the horn becomes cosh(). (d) was mostly done correctly. Most candidates discussed the tuning of the harmonic series for a bugle in party (e)

Q1. Assuming that the pressure field
(a) lakes the form

$$
p^{\prime}(\underline{x}, t)=\frac{\partial}{\partial x}\left(\frac{f\left(r-c_{0} t\right)}{r}\right)
$$

We have assumed this form because $f(r-c o t)$ satisfies an outgoing waver solution to the wave equation. Therefore $\frac{\partial}{\partial x}\left(\frac{f(r-c o t)}{r}\right)$ mist also be a solution to the wave equation.
Let $f(r-\cot)=\alpha e^{\frac{i \omega}{c_{0}}(\cot -r)}$

$$
\therefore p^{\prime}(\underline{x}, t)=\frac{\partial}{\partial x}\left\{\frac{=e^{i(\omega t-k r)}}{\sigma}\right\}
$$

Here it is assumed that the
physical pressure fierce will be the real part of this expression.

$$
\begin{align*}
& p^{\prime}(r, \theta, t)=\left\{-\frac{1}{r^{2}}-\frac{i k}{r}\right\} e^{i(\omega t-k r)} \\
& \times \frac{\partial r}{\partial x}
\end{aligned} \underbrace{\frac{\partial r}{\partial x}=} \begin{aligned}
& \frac{x}{r}=\cos \theta \\
& \therefore \quad p^{\prime}(r, \theta, t)=\left\{-\frac{1}{r^{2}}-\frac{i k}{r}\right\} e^{i(\omega t-k r)} \\
& \cos \theta \tag{1}
\end{align*}
$$

The BC at $r=a$ can be written as

$$
\begin{equation*}
p^{\prime}(r=a, \theta, t)=\operatorname{Re}\left\{A \cos \theta e^{i \omega t}\right\} \tag{2}
\end{equation*}
$$

Substituting $r=a$ in Eq (1) and equating it to the RHS in (z):

$$
\begin{align*}
& \alpha\left\{-\frac{1}{a^{2}}-\frac{i k}{a}\right\} e^{i(\omega t-k a)} \cos \theta \\
&=A \cos \theta e^{i \operatorname{s} t} t \\
& \Rightarrow \alpha=\frac{-A e^{i k a} a^{2}}{(1+i k a)} \tag{3}
\end{align*}
$$

It is easier to calculate the radiated power in the farfield.
In the far tied,

$$
\begin{align*}
& \frac{p^{\prime}}{u^{\prime}} \sim \rho_{0} c_{0} \\
\therefore & u^{\prime}=\frac{p^{\prime}}{\rho_{0} c_{0}} \tag{4}
\end{align*}
$$

Also, as $r \rightarrow \infty$,

$$
\frac{1}{r^{2}} \ll \frac{k}{r}
$$

$\therefore \quad E q$ (1) simplifies to

$$
p^{\prime}(r, \theta, t) \sim \frac{-i k \alpha}{r} e^{i(\omega t-k r)} \cos \theta
$$

Inteusing $I=p^{\prime} u^{\prime}$

$$
\begin{align*}
& \bar{I}=\frac{1}{2} \operatorname{Re}\left\{\hat{p} \hat{u}^{*}\right\} \tag{6}\\
& \text { From }(5)(6),(z) \&(4) \\
& \bar{I}=\frac{1}{2} \operatorname{Re}\left\{\frac{k_{1}^{2} d_{1}^{2}}{r^{2} \rho_{0} c_{0}} \cos ^{2} \theta\right\}
\end{align*}
$$

$$
\begin{align*}
& \text { Power }=\int \bar{I} d S \\
&=\int_{0}^{\pi} \bar{I} 2 \pi r^{2} \sin \theta d \theta \\
&=\frac{k^{2}}{2} \frac{\alpha^{2} \cdot 2 \pi \partial^{2}}{Z^{2} \rho_{0} c^{2}} \\
& \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \tag{8}\\
& I_{n} t=\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta
\end{align*}
$$

Let $-\cos \theta=3$

$$
\therefore \operatorname{Int}=\int_{-1}^{1} s^{2} d s=\left[\frac{s^{3}}{3}\right]_{-1}^{1}
$$

$$
=\frac{2}{3}
$$

$\therefore \varepsilon_{q}(8)$ becomes

$$
\text { Power }=\frac{k^{2}}{3} \frac{|2|^{2} 2 \pi}{\rho_{0} c_{0}}
$$

Using Eq (3),

$$
\begin{align*}
& \text { Power }=\frac{2 \pi}{3} \frac{k^{2}}{\rho_{0} c_{0}} \frac{A^{2} a^{4}}{\left(1+k^{2} a^{2}\right)} \\
& \text { Power }=\frac{2 \pi}{3} \pi \frac{a^{2} A^{2}}{\rho_{0} c_{0}} \frac{k^{2} a^{2}}{\left(1+k^{2} a^{2}\right)} \tag{9}
\end{align*}
$$

(b)

$$
\begin{aligned}
\lambda \gg a & \Rightarrow k a \ll 1 \\
\& \lambda \ll a & \Rightarrow k a \gg 1
\end{aligned}
$$

Fow (a).
Power (ka.>1)

$$
\sim \frac{2}{3} \pi \frac{a^{2} A^{2}}{\rho_{0} C_{0}}
$$

\&. Power ($k_{a} \ll 1$)

$$
\sim \frac{2}{3} \pi \frac{a^{2} A^{2}}{\rho_{0} c_{0}}\left(k^{\infty} a\right)^{2}
$$

Conparie those two exprosins we see tut to get to save power A reads to be higuer by a fachr $f \frac{1}{(k a)}$

When $k a \ll 1$ to get the save power when $\mathrm{ka} \gg 1$.

Eng of $k a=0.1, A$ reed to be 10 tins larger to resole te save pow as when $k_{a}=10$.
(a). Narrow opening connected to a large cavity

- Small dinensins of the necle \& cavity relative to the acoustic wavelength
- Viscous damping is regligible
- Perturbations are lireor and isentropic
(b)

$$
\begin{aligned}
& A=4 \times 10^{-4} \mathrm{~m}^{2} \\
& \pi a^{2}=A \Rightarrow a=\sqrt{\frac{A}{\pi}}=1.1 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

The effective length of the reck

$$
\begin{aligned}
l^{\prime} A \cdot l+1.2 a & \sim 1.2 a \quad(l \ll a) \\
V & =0.33 \mathrm{~L}=0.33 \times 10^{-3} \mathrm{~m}^{3} \\
\therefore f & =\frac{c 0}{2 \pi} \sqrt{\frac{A}{l^{\prime} V}}=\frac{347}{2+} \sqrt{\frac{4 \times 10^{-4}}{1.2 \times 1.10^{-2} \times 0.33 \times 10^{-3}}} \\
f & =529.2 \mathrm{~Hz}
\end{aligned}
$$

(c) For $f=529.2 \mathrm{~Hz}$, the wavelength

$$
\lambda=\frac{347}{529.2}=0.66 \mathrm{~m}
$$

The con has a height f 0.1 m .
\therefore The wavelength is not much berger that the size of the cavity.
Frs a giver wavelength, a larger cavity has a lowed stiffness coupcag to a smaller caving. The lower stiffness would result in a lowed resonance foreplay
(d)

We now have a duct that is closed at -2 one end \& open at the other

If acts as a quarter - vavelengh oscillator. Thus,

$$
\begin{aligned}
h & =\lambda / 4 \\
\text { or } \lambda & =4 h=0.4 \mathrm{~m}
\end{aligned}
$$

$$
f=\frac{c}{x}=\frac{347}{0.4}=\underline{867.5 \mathrm{~Hz}}
$$

(e) The length of the 'neck' of a bottle is much larger tran the length of the can. This explains the drop in frequency.

(f) If covid be achieved by either:
(i) Increasing the effective langton of the neck for example, by inserts a rolkd sheet if duper. But note paper is rot rigid and will provide some dampit.
(ii) Reducing that area of the oporing
(iii) Reducing the speed f sound by using a denser gas.

Multipole Qugtios

$$
\hat{p}=\sum_{n} \hat{S}_{n} f\left(x-x_{n}\right) \quad f(x)=\frac{1}{|x|} e^{-i k|n|}
$$

$$
\begin{aligned}
& \text { a) } f\left(n-x_{n}\right)=f(x)-x_{n} \cdot \nabla f(x)+\ldots \\
& \hat{p}=\left(q \hat{S}_{n}\right) f(n)-\left(q S_{n} n_{n}\right) \cdot \nabla f(x)+\ldots
\end{aligned}
$$

b) $\left\{S_{n}=0\right.$ but higlar order terns are non-zero macro that the will be significant directional dependence in the for field.
c)

$$
\begin{aligned}
\left\{\hat{S}_{n} x_{n}\right. & =\binom{3}{0}+\binom{3}{0}+\binom{0}{5}+\binom{0}{5} \\
& =\binom{6}{10}
\end{aligned}
$$

the significance of Lighter ardarterns in the multipole expansion increases as frequent hoer, so using just the dipole ter will bare less acmerte os the fregpony increases.
d)

$$
\begin{aligned}
\hat{p} & =\int \frac{e^{-i k \mid n-y)}}{4 r|x-y|} 4 \pi S(y) d y \\
& =\int \frac{e^{-i k(n-y)}}{|n-y|} S(y) d y \\
& =\int f(n-y) S(y) d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } f(x-y)=f(x)-y \cdot \nabla f(y)+\ldots \\
& \hat{p}=\left[\int s(y) d y\right] f(x)-\left[\int s(y) y d y\right] \cdot D f(x) \\
& \prod_{\text {morople }}+\ldots{ }^{\text {dipole }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } \hat{p}(r, b)=-\frac{1}{i} \operatorname{ing}_{0} l_{a} a^{3} \cos b \frac{\partial}{\partial r}\left(\frac{e^{-i k r}}{r}\right) \\
& =-\frac{1}{2} \operatorname{ing} g_{0} \|_{a} 3 \frac{\partial}{\partial n_{1}}\left(\frac{e^{-i l r}}{r}\right) \\
& =-\frac{i}{i} \operatorname{iog} \cdot a_{a}^{3} e_{-1} \cdot \nabla\left(\frac{e^{-i|\mu| a \mid}}{|\underline{I}|}\right)
\end{aligned}
$$

Lace noropole stungth is zero diple sheyth is

$$
\frac{1}{i} i_{0} U_{a}{ }^{3} \underline{e}_{1}
$$

Webster Horn Question.
a)

$$
\begin{gathered}
\frac{1}{c} \frac{\partial^{2} p}{\partial t^{\prime}}-\nabla^{2} p=0 \\
\int_{C V} \frac{1}{c^{2}} \partial^{2} \rho d S-\int_{w} \nabla^{2} p d S=0 \\
\int_{C V} \frac{1}{c} \frac{\partial^{2} p}{\partial t^{2}} d V-\int_{c S} n \cdot \nabla p d S=0
\end{gathered}
$$

on (2) $\&$ (4) $n \cdot \nabla_{p}=0$ buase of the wail
on (1) $n \cdot \nabla_{p}=-\frac{\partial p}{\partial x}$
os (3) $r \cdot \nabla \rho=\frac{\partial \rho}{\partial n}$
ashice $p, \frac{\partial p}{\partial n}, \ldots$ are costat over cross-section

$$
\int_{a} \frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}} N\left(\frac { \partial p } { \partial n _ { n } } | _ { n } A \left(n_{1}-\left.\frac{\partial p}{\partial n_{n}}\right|_{n \delta_{n}} A\left(n+\delta_{n}\right)=0\right.\right.
$$

let $\delta_{n} \rightarrow 0$

$$
\frac{A S_{n}}{c^{2}} \frac{\partial^{2} \rho}{\partial t^{2}}-S_{n} \frac{\partial}{\partial_{n}}\left(A \frac{\partial \rho}{\partial_{n}}\right)=0
$$

$$
\frac{1}{c^{2}} \frac{\partial^{2} \rho}{\partial t^{2}}-\frac{1}{A} \frac{\partial}{\partial r}\left(A \frac{\partial \rho}{\partial r}\right)=0
$$

b)

$$
\begin{aligned}
A & =\frac{A_{0}}{2}\left(1+\cos \left(2 \alpha_{n}\right)\right) \\
& =A_{0} \cos ^{2}(\alpha n)=\pi a^{2} \\
q & =\sqrt{\frac{A_{0}}{\pi}} \cos (\alpha n) \\
\frac{d a}{d n} & =-\sqrt{\frac{A_{0}}{\pi}} \alpha \sin (\alpha n) \\
\frac{d^{2} a}{d n^{2}} & =-\sqrt{\frac{A_{0}}{\pi}} \alpha^{2} \cos (\alpha n) \\
\frac{1}{a} \frac{d^{2} a}{d n^{2}} & =-\sqrt{A_{0}} \alpha^{2} \cdot \sqrt{\frac{\pi}{A_{0}}} \\
& =-\alpha^{2} \\
\frac{d^{2} \psi}{d n^{2}} & +\left(k^{2}+\alpha^{2}\right) \psi=0
\end{aligned}
$$

$$
\begin{aligned}
\psi & =I e^{-i \sqrt{k^{2}+\alpha^{2}} n}+R e^{i \sqrt{k^{2}+\alpha^{2}} n} \\
\hat{p} & =A^{-1 / 2} \psi \\
& =A_{0}^{-1 / 2} \cos ^{-1}(\alpha n) \psi \\
& =A_{0}^{-1 / 2} I \frac{e^{-\sqrt{l^{2}+\alpha \alpha^{2}} n}}{\cos (\alpha n)}+A_{0}^{-1 / 2} R \frac{e^{i \sqrt{l^{2}+\alpha^{2}} n}}{\cos (\alpha n)}
\end{aligned}
$$

C) for no propagation we. need

$$
L^{2}+a^{2}<0
$$

take α to be inginery, $\alpha=i \beta$

$$
\begin{aligned}
& k^{2}-\beta^{2}<0 \\
& \beta>k
\end{aligned}
$$

if a is weplex the the radius becomes a cosh curve

$$
\begin{aligned}
& a(x)=\sqrt{\frac{\beta_{0}}{\pi}} \cos \left(\frac{\beta_{0} n}{2}\right)=\sqrt{\frac{A_{0}}{\pi}} \cosh \left(\frac{B_{n}}{2}\right) \\
& A(n)=A_{0} \cosh ^{2}\left(\frac{\beta_{n}}{2}\right)
\end{aligned}
$$

d) i) $\frac{1}{a} \frac{d^{2} a}{d r^{2}}=0$
\Rightarrow all plare waves propagata
i) $\frac{1}{c} \frac{d^{2} a}{d_{x i}}=0$
2) 10 plae wans propeget.
e) bugle Larns.

The bell is designet so thet $\therefore \frac{d^{2} a}{d n^{2}}$ incecess, maning lower fregureises reflect degre inside Hi bell. Tha Lelps Ha bugle be able to produce a full harmanic series despite laving closed-oper bouddry conditians.

Derinction of Modified Webster Lorn eqpatitas.
Not AN QUESTION.

$$
\begin{aligned}
& k^{2} \hat{p}+\frac{1}{A} \frac{d}{d x}\left(A \frac{d \hat{p}}{d x}\right)=0 \\
& \psi(x)=\hat{\rho}(x) A(x)^{1 / 2} \\
& \hat{p}=\psi A^{-1 / 2} \quad A=\pi^{2} \\
& =\psi \pi^{-k} a^{-1} \\
& \frac{L^{2} \psi}{a} x^{-1}+\frac{1}{\pi a^{2}} \frac{d}{d n}\left(\frac{1}{p a^{2}} \frac{d}{d x}\left(\psi a^{-1}-x^{-1}\right)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{k^{2}}{a} \psi+\frac{1}{a^{2}} \frac{d}{d x}\left(a^{2}\left(\frac{1}{a} \frac{d \psi}{d x}-\frac{\psi}{a^{2}} \frac{d a}{d x}\right)\right)=0 \\
& \frac{k^{2}}{a} \psi+\frac{1}{a^{2}} \frac{d}{d x}\left(a \frac{d \psi}{d x}-\psi \frac{d a}{d n}\right)=0 \\
& \frac{k^{2}}{a} \psi+\frac{1}{c^{2}}\left(\frac{d^{2} \psi}{d x^{2}}+\frac{d a}{d n} \frac{d \psi}{d x}-\frac{d \psi}{d n} \frac{d a}{d x}-\psi \frac{d^{2} a}{d n^{2}}\right)=0 \\
& k^{2} \psi+\frac{d^{2} \psi}{d x^{2}}-\frac{\psi}{a} \frac{d_{a}^{2}}{d x^{2}}=0 \\
& \frac{d^{2} p}{d x^{2}}+\left(k^{2}-\frac{1}{a} \frac{d^{2} a}{d x^{2}}\right)=0
\end{aligned}
$$

