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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 4 May 2021 9 to 10.40

Module 4A15

AEROACOUSTICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4A15 Aeroacoustics data sheet (6 pages)
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 The acoustic pressure on the surface of a vibrating sphere of radius a is given by

p′ = Acosθ cos(ωt)

where A and ω are constant and θ is the polar angle in spherical coordinates. Assume
that the mean density and speed of sound in surrounding fluids are constant and denoted
by ρo and co, respectively.

(a) Find the time averaged acoustic power generated by the source. [85%]

(b) If λ is the wavelength of sound produced, explain why the amplitude of vibration A
needs to be much higher to get the same power when λ � a compared to when λ � a. [15%]
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2 A 330 ml open Coke can is to be used as a Helmholtz resonator. The Helmholtz
resonance frequency is given by

f =
c0
2π

√
A
lV

where c0 is the speed of sound, A and l are the area and the effective length of the neck of
the resonator, respectively and V is the volume of the cavity.

(a) State all the assumptions necessary to derive the above expression. [15%]

(b) By assuming that the can has a thickness of 10−4 m throughout, a height of 0.1 m
and a circular opening of area 4×10−4 m2, derive the Helmholtz resonance frequency of
the can. [25%]

(c) The measured frequency is a bit lower than the value calculated in part (b). Without
doing detailed calculations, explain why this would be the case. [15%]

(d) If, by using a can opener, we remove the top of the can completely, what would be
the new lowest acoustic resonance frequency? [15%]

(e) A 330 ml Coke bottle has a resonance frequency of 300 Hz. Explain why the
frequency is so different from the can resonance frequency. [15%]

(f) We want the Coke bottle to produce a C4 note (262 Hz) when we blow over its top.
How would you accomplish this with the 330 ml bottle? [15%]
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3 If Ŝn are the strengths of a series of monopole sources located close to the origin at
xn, then the acoustic pressure field is given by,

p̂(x) = ∑
n

Ŝn f (x−xn) where f (x) =
1
|x|e
−ik|x|.

(a) Find the multipole series expansion for the acoustic field p̂(x) about the origin.
Include the first two terms of the series. [20%]

(b) Under what circumstances will the pressure field p̂(x) far away from the origin have
significant directional dependence? [10%]

(c) 4 monopole sources are placed at (1,0), (0,1), (−1,0), and (0,−1), with strengths
Ŝ1, Ŝ2, Ŝ3, and Ŝ4 respectively. What strength of dipole, placed at the origin, could be
used to model these 4 sources if Ŝ1 =−Ŝ3 = 3 and Ŝ2 =−Ŝ4 = 5? How will the accuracy
of the dipole approximation vary with frequency? [15%]

If instead of a discrete set of sources, we have a continuous distribution Ŝ(x), the acoustic
field p̂(x) will be governed by the equation,

(∇2 + k2)p̂(x) = 4π Ŝ(x).

(d) Use the Green’s function to find the integral expression for p̂(x). [10%]

(e) By doing a Taylor series expansion of the Green’s function derive the effective
monopole and dipole strengths at the origin that can be used to approximate the sound
field produced by Ŝ(x). [20%]

A sphere of radius a, oscillates along the x1 axis with velocity amplitude U and frequency
ω . k = ω/c0 is the wavenumber, and (r,θ ,ψ) are spherical polar coordinates. If the
sphere is compact the acoustic field is given by,

p̂(r,θ) =−1
2

iωρ0Ua3 cosθ
∂
∂ r

(
e−ikr

r

)
.

(f) What are the effective monopole and dipole strengths of the oscillating sphere? [25%]
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4 (a) Plane waves travel in a duct, aligned with the x-axis, that has varying cross-
sectional area A(x). Show that these waves are governed by the Webster horn equation

1
c2

0

∂ 2 p′

∂ t2 −
1
A

∂
∂x

(
A

∂ p′

∂x

)
= 0.

[20%]

If we make the substitutions ψ(x) = p̂(x)
√

A(x) and A(x) = πa(x)2, where a(x) is the
local radius of the duct, then the Webster horn equation can be written

d2ψ
dx2 +

(
k2− 1

a
d2a
dx2

)
ψ = 0. (1)

where k = ω/c0 is the wavenumber.

(b) A(x) takes the form A(x) = A0[1+ cos(2αx)]/2. A0 is a real constant and α is a
complex constant. What form does the pressure field take? [35%]

(c) What value of α could cause waves not to propagate in the duct? Sketch the
corresponding shape of the duct. [20%]

(d) What does equation (1) tell us about wave propagation for:

(i) a cylindrical duct?

(ii) a conical duct?

[15%]

(e) Using an example of a musical instrument explain why it is beneficial to have a duct
in which not all plane waves of all frequencies can propagate. [10%]

END OF PAPER
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Module 4A15 Aeroacoutics Data Sheet

USEFUL DATA AND DEFINITIONS

Physical Properties
Speed of sound in an ideal gas

√
γRT , where T is temperature in Kelvins

Units of sound measurement

SPL (sound pressure level) = 20log10

(
p′rms

2×10−5Nm−2

)
dB

IL (intensity level) = 10log10

(
intensity

10−12watts m−2

)
dB

PWL (power level) = 10log10

(
sound power output

10−12watts

)
dB

Definitions
Surface impedance Zs, relates the pressure perturbation applied to a surface, p′,

to its normal velocity v′; p′ = Zsv′

Characteristic impedance of a fluid ρ0c0

Specific impedance of a surface Zs/(ρ0c0)

Wavenumber k = ω/c0 = 2π/λ , where λ is the wavelength

Helmholtz number (or compactness ratio) = kD, where D is a typical dimension
of the source.

Strouhal number = ωD/(2πU) for sound of frequency ω (in rad/s), produced
in a flow with speed U , length scale D.

Basic equations for linear acoustics
Conservation of mass

∂ρ ′

∂ t
+ρ0∇ ·v′ = 0
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Conservation of momentum

ρ0
∂v′

∂ t
+∇p′ = 0

Isentropic

c2
0 =

d p
dρ

∣∣∣∣
S

Wave equation
1
c2

0

∂ 2 p′

∂ t2 −∇2 p′ = 0

Energy density

e =
1
2

ρ0v′2 +
1

2ρ0c2
0

p′2

Intensity I = p′v′

Velocity potential φ ′ satisfies the wave equation and p′ =−ρ0
∂φ ′
∂ t , v′ = ∇φ ′.

Autocorrelation F(ξ ), the autocorrelation of f (y) is given by

F(ξ ) = f (y) f (y+ξ )

F(0) = f 2

Integral length scale, l

l f 2 =
∫ ∞

−∞
F(ξ )dξ

Sound power
Sound power from a source is defined as

P =
∫

S
Ī ·dS =

∫

S∞

p′2

ρ0c0
dS

for a statistically stationary source. For an outward propagating spherically sym-

metrical sound field P = p′2
ρ0c0

4πr2, where p′ is the acosutic pressure at radius r.
For a sound field, which is a function of spherical polar coordinates r,θ only,

and is independent of the azimuthal angle,

P = 2πr2
∫ π

0

p′2

ρ0c0
sinθdθ
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Simple wave fields

1D or plane wave
The general solution of the 1D wave equation is p′(x, t) = f (t − x/c0) + g(t +
x/c0), where f and g are arbitrary functions. In a plane wave propagating to the
right p′ = ρ0c0u′; in a plane wave propagating to the left p′ = −ρ0c0u′, u′ being
the particle velocity.

Spherically symmetric sound fields
The general spherically symmetric solution of the 3D wave equation is

φ ′(r, t) =
f (t− r/c0)

r
+

g(t + r/c0)

r
,

where r is the distance from the source; f and g are arbitrary functions.

cosθ dependence
The general solution of the 3D wave equation with cosθ dependence is

p′(x, t)=
∂
∂x

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]
= cosθ

∂
∂ r

[
f (t− r/c0)

r
+

g(t + r/c0)

r

]

Useful mathematical formulae

Spherical polar coordinates (r,θ ,ψ)

Gradient
∇p′ =

(
∂ p′

∂ r
,
1
r

∂ p′

∂θ
,

1
r sinθ

∂ p′

∂ψ

)

Divergence

∇ ·v′ = 1
r2

∂
∂ r

(
r2v′r

)
+

1
r sinθ

∂
∂θ
(
sinθv′θ

)
+

1
r sinθ

∂v′φ
∂ψ

Laplacian

∇2 p′ =
1
r2

∂
∂ r

(
r2 ∂ p′

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂ p′

∂θ

)
+

1
r2 sin2 θ

∂ 2 p′

∂ψ2

3 / 6



Delta functions

Kronecker Delta

δi j =

{
1 i = j
0 i 6= j

1D δ -function δ (x) = 0 for x 6= 0 and
∫ ∞
−∞ δ (ax−b) f (x)dx = f (b/a)/|a|

3D δ -function δ (x) = δ (x1)δ (x2)δ (x3)

Convolution algebra

Convolution of f (x) and g(x)

( f ?g)(x) =
∫ ∞

−∞
f (y)g(x−y)dy

Commutative properties
f ?g = g? f

∂
∂xi

( f ?g)(x) = f ?
∂g
∂xi

=
∂ f
∂xi

?g

Green’s function

3D Green’s function for wave equation
(

∂ 2

∂ t2 − c2
0∇2
)

g(x, t|y,τ) = δ (t− τ)δ (x−y)

g(x, t|y,τ) = δ {|x−y|− c0(t− τ)}
4πc0|x−y|

Lighthill’s Acoustic Analogy
Lighthill’s equation (

∂ 2

∂ t2 − c2
0∇2
)

ρ ′ =
∂ 2Ti j

∂xi∂x j
.

For cold, isentropic, low Mach-number jets, Ti j can be approximated as:

Ti j = ρ0uiu j
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Observer

Rigid thin plate

Incident plane
wave

r

θ

θ
o

x

y

Figure 1: Geometry for edge scattering

Lighthill eight power law Acoustic power,

Pa ∼
ρod2

j

c5
0

u8
j ,

where d j and u j are the jet exit diameter and velocity, respectively.

Refraction

Snells’s law for determining a ray path is

sinθ
c0

= constant . (1)

Diffraction

Field scattered by a sharp edge If the incident plane waves is

pi(x, t) = Pinc exp(iωt + ik0xcosθ0 + ik0ysinθ0) , (2)

then the diffracted pressure is

pd = Pinc

(
2

πk0r

) 1
2 sin(θ0/2)sin(θ/2)

cosθ + cosθ0
exp
(
− iπ

4
− ik0r

)
. (3)
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In a cylindrical duct of radius a

The pressure field is given by

p′(x, t) = ei(ωt+nθ)Jn(zmnr/a)(Ae−ikx3 +Beikx3),

where zmn is the mth zero of J̇n(z) and k = (k2
0− z2

mn/a2)1/2.

For large azimuthal wavenumber, n

z1n ≈ n+1.85n1/3
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