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1(a) When the blade throat is choked the average Mach number across the throat is choked.
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The first term is geometric and sets the Mach 1 exit flow angle. The second term is due to supersonic
deviation. The third term is due to loss between the throat and downstream. In the supersonic
regime the second and third terms rise. In the subsonic regime the deviation is small due to the
boundary layers being thin.
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A loss coefficient of 6.2%.

(c) @y = 30°and My = 0.3°
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(d) Two thirds of the loss occurs down stream of the throat and so
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Now from part (a)
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If there was no loss downstream of the throat the
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So the deviation caused by the loss downstream of the throat is 69.3° — 68.8° = 0.5°



(e) The back pressure of the cascade can be lowered until the axial velocity component reaches the
speed of sound. This condition is called the limit load and is the point where the pressure waves
cannot travel upstream.
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So the

A loss coefficient of 33.3%.
(f) There are three sources of entropy production:

(i) As the exit Mach number rises the strength of the shock increases. This results in an
increase in the entropy production across the shock.

(ii) A complex shock structure occurs close to the trailing edge, as shown below. As the exit
Mach number is increased this region becomes a significant source of entropy production.
This is a larger source of entropy production than the shock itself.

(iii) As the shock strength increases the impingement of the shock on the suction surface
boundary layer of the adjacent blade results in boundary layer separation. This results in a
mixing process which creates entropy.
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2. (a) Euler’s work equation
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Now because it is a repeating stage a3 = ;. Subbing in from above
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So the zero inlet swirl results in a high reaction design.
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If you design with 0° interstage swirl then you don’t need an inlet guide vane. This reduces the loss
associated with including an extra blade row. However, for a high reaction design the inlet velocity
of the rotor and stator are not equal. Because boundary layer loss scales with the relative inlet
velocity cubed a high reaction design will be of higher loss. In practice a compressor often has a high
reaction In the front stages and then drops the reaction to closer to 50% in the central stages. This
avoids the use of an inlet guide vane but benefits from a balanced inlet velocity between the rotor
and stator.

(c) At the inlet of the rotor
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So the there is an 17% reduction in area across the rotor.
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So you would select 8 stages.
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Because Assand Ag are choked
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So the constant C; is
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The assumption is made that 100% of the power is transmitted. i.e. no mechanical losses. No
exhaust losses.

As the BPR rises the magnitude of C; drops. This means that for the same fan power the
temperature in core mustrise. This in turn will change c,,.

(b) ()
p p y—1 yo1
02 _Poz _ — 2\
@-g-(”T’V’w)
y-1
M2, = [(@) Y [(1_35)%_1 2 0.4476
P19 y—l 0.4
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Wf = mywy = mpwey, (Toz — To1) =348.6%1005%27.2=9.53MW
(iii) At 12 km height from CUED data book

T —07519 2 =0.1915
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T, =288K pg = 1.01325 bar
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At Mach 0.8
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Because the design point of the fan is unchanged its pressure ratio is unchanged.
Doz = 1.35 X pyy = 0.399 bar

The exit throttle Mach number is

p1 0194 0.486
Doz 0399
From compressible gas tables
M]_g = 107

Because the non-dimensional operating point of the fan has not changed the stability margin of the
fan will not have changed.



