$4 A 9$ - MOLECULAR THERMODYNAMICS

SOLUTIONS TO TRIPOS 2023

DR A.J. WHITE.
PROF. AM. BOAS
NOTE EXAMINERS' COMMENT ON LAST PAGE.

Q1 (a) The speed dist'. is defined such that $g_{e}(c) d C=f_{e}(c) d V_{c}$, but the "volume" containing molecules in speed range $c \rightarrow c+d c$ is $d v_{c}=4 \pi c^{2} d c$ (ie., a thin spherical shell). Thus $g_{e}(c) d c=f_{e}(c) \cdot 4 \pi c^{2} d c$

$$
\therefore g_{e}(c)=\frac{4 \pi n c^{2}}{(2 \pi R T)^{3 / 2}} \exp \left(-\frac{c^{2}}{2 R T}\right)
$$

Modal reloity given by maximum in $g_{2}(c)$

$$
\begin{equation*}
\therefore \frac{d g_{c}}{d C}=0 \Rightarrow 2 C-c^{2} \times \frac{2 C}{2 R T}=0 \quad \Rightarrow \quad c_{m}=\sqrt{2 R T} \tag{4}
\end{equation*}
$$

(b) (i)

(ii)

$$
\begin{align*}
& F l u x=\int_{0}^{\infty} \iint_{-\infty}^{\infty}\left(m c_{1}\right) c_{1} f_{e}\left(c_{i}\right) d c_{3} d c_{2} d c_{1}=1 / 2 n m \overline{c_{1}^{2}}=\left.P_{H_{e}}\right|^{2} \\
& \left.\begin{array}{l}
\text { more: } \pi \text { is possible to evchute this using } \\
\text { the integrals, with much mon work }
\end{array}\right]=0.25 \text { bar } \tag{5}
\end{align*}
$$

(iii) Let $\psi\left(c_{1}\right) d c_{1}$ \& the fraction of He molealas with x_{1} reboity in mage $c_{1} \rightarrow c_{1}+d c_{1}$. From the form of fe this must be of the form $\psi\left(c_{1}\right)=A \exp \left(-c^{2} / 2 R T\right)$
Thus:

$$
\bar{c}_{1}=\frac{\int_{0}^{\infty} c_{1} \psi\left(c_{1}\right) d c_{1}}{\int_{0}^{\infty} \psi\left(c_{1}\right) d c_{1}}=\frac{\int_{0}^{\infty} A c_{1}^{2} e^{-c_{1} / 2 R T} d c_{1}}{\int_{0}^{\infty} A e^{-c^{2} / 2 R T} d c_{1}}
$$

Nos put $x=\frac{c_{1}}{\beta}$ where $\beta=\sqrt{2 R T}$:

$$
\begin{equation*}
\bar{c}_{1}=\frac{\beta}{\beta^{2} I_{1}} \frac{\sqrt{2 \pi I_{0}}}{} \times \frac{1 / 2}{\sqrt{\pi / 2}}=\sqrt{\frac{2 R T}{\pi}}=\sqrt{\frac{1}{\frac{2}{8314 \times 200}} \frac{1 \pi}{\pi}}=630 \mathrm{~m} / \mathrm{s} \tag{}
\end{equation*}
$$

Note: It is also passible to defence this whee on the basis of the $]$ one-sided molecular flue being $F_{+}=n \bar{C} / 4 \Rightarrow \bar{c}_{1}=\bar{c} / 2$ Gut noting that only $\frac{n}{2}$ msteculss move in the tue c_{1} dir-
(c) The traction of modealhs with $c_{1}>c_{0}$ is given by: $1-\frac{\int_{0}^{c_{0}} A \exp \left(-c_{1}^{2} / 2 R T\right) d c_{1}}{\int_{0}^{\infty} A \exp \left(-c_{1}^{2} / 2 R T\right) d c}$

$$
=1-\operatorname{erf}\left(x_{0}\right)
$$

where $x_{0}=\frac{c_{0}}{\sqrt{2 R T_{0}}}=\frac{670}{\sqrt{2 \times 8314+300 / 4}}=0.6$
Thus fraction with $C_{1}>670=1-\operatorname{erf}(0.6)=0.3961$

Q2. (a) Voume of inflmeno suept aut by mesecak over λ cactains, on covreg, one other midecule:

$$
\therefore \pi d^{2} \lambda n \simeq 1 \Rightarrow \lambda=\frac{\downarrow}{\sqrt{2} n \pi d^{2}}
$$

(i) $\mu=\frac{\rho \bar{c} \lambda}{2}=\frac{\text { him } \bar{C}}{2 \sqrt{2} y \pi d^{2}} \quad$ (depends on Tonly)

$$
\begin{aligned}
& \text { (ii) } d^{2}=\frac{m \bar{e}}{2 \sqrt{2} \pi \mu}=\frac{28 \sqrt{8 \times 297 \times 300 / \pi}}{6.023 \times 10^{26} \times 2 \sqrt{2} \times \pi \times 1.79 \times 10^{-5}} \\
& \Rightarrow d \simeq 3.73 \times 10^{-10} \mathrm{~m}
\end{aligned}
$$

(b) (i)
 velocity pofle extrupolated over distance λ.

Incident fhux of monertum on surface $=\frac{\rho_{\bar{C}}}{4} u_{\lambda}=\frac{\rho_{4}}{\frac{\bar{c}}{4}}\left(u_{s}+\left.\lambda \frac{d u}{d r}\right|_{R}\right)$
Peflected flux of momentum $=0$ (deffuse)

$$
\begin{aligned}
\therefore \text { Net fluk of momation } & =\frac{p \bar{c}}{4}\left(u_{s}+\left.\lambda \frac{d r}{d r}\right|_{R}\right)=\tau_{w} \\
& =\mu\left(\frac{d u}{d r}\right)_{R}=\left.\frac{p \bar{c} \lambda}{2} \frac{d u}{d r}\right|_{R}
\end{aligned}
$$

$$
\therefore \quad u_{s}=\lambda\left(\frac{d u}{d r}\right)_{k}
$$

(ii) The axial force must be independent or radius (bihercise here would be ret force on a fling elerneut beteven two radii). Thus $v \tau=$ const.
This is purdy a dynamic relation i and does not depend on any cessumptioi about continues or non-cortinuem fleas.

Thus $\frac{d u}{d r}=\frac{a}{r} \Rightarrow u(r)=a \ln r+b$
$B / C^{\prime} s \quad u(R)=a \ln R+b=u_{s}=\left.\frac{\lambda}{d u}\right|_{R}=\frac{\lambda a}{R}$

$$
\begin{equation*}
u(2 R)=a \ln 2 R+b=V-\left(\frac{\lambda a}{2 R}\right)<\sup _{\text {SLANDER }} \text { aUER } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\therefore(2)-(1): a \ln 2=V-\frac{3 \lambda a}{2 R} \Rightarrow a=\frac{V}{\ln 2+\frac{3 \lambda}{2 R}} \tag{2}
\end{equation*}
$$

Thus $u(r)=\left(\frac{V}{\ln 2+\frac{3 \lambda}{2 R}}\right)\left[\ln \left(\frac{r}{R}\right)+\frac{\lambda}{R}\right]$
(ii) The force F is proportional to $\frac{d u}{d r} l_{2 \Omega} \propto a$

$$
\begin{aligned}
& \therefore \frac{F}{F_{0}}=\frac{\forall}{\ln 2+\frac{3}{2} k_{n}} \times \frac{\ln 2}{\gamma} \equiv \frac{1}{1+B k_{n}} \\
& \Rightarrow B=\frac{3}{2 \ln 2}
\end{aligned}
$$

Q3 (a) Degeneracy g_{j} is the number of states hawing the same energy. For $g_{j}>3 ; n_{1}, n_{2} \& n_{3}$ must be different.
Lavrst energy leer is thus with quantum number $1,28.3$ and has degeneracy.
(b) $M(\varepsilon)=1 / 8 \times$ volume of sphere [Because each state occupies unit vol.]

But $n^{2}=\left(n_{1}^{2}+n_{2}^{2}+\mu_{3}^{2}\right)=\frac{8 m V^{2 / 3} \varepsilon}{h^{2}} \Rightarrow n=\frac{2 V^{1 / 3}}{h}(2 m \varepsilon)^{1 / 2}$

$$
\Rightarrow \mu(\varepsilon)=\frac{\pi}{6} \times \frac{8 V}{h^{3}}(2 m \varepsilon)^{3 / 2}=\underline{\frac{4 \pi}{3} \frac{V}{h^{3}}(2 m \varepsilon)^{3 / 2}}
$$

Aorage energy of molecules, $\bar{\varepsilon}=\frac{3 k T}{2}$

$$
\begin{equation*}
\therefore \quad \Gamma(\bar{\varepsilon})=\frac{4 \pi}{3} \times \frac{10^{-9}}{n^{3}}\left(\frac{8 \times 4}{N_{A}} \times \frac{3 \times k \times 300}{q}\right)^{3 / 2}=\frac{1.08 \times 10^{22} \text { STATs }}{\underline{q}} \tag{5}
\end{equation*}
$$

$$
\text { (c) } \begin{align*}
& g(c) d C=\frac{d \Gamma}{d \varepsilon} d \varepsilon ; \quad \varepsilon \\
& \therefore g(c)=m C \frac{1 / 2}{}=m C^{2} \Rightarrow d \varepsilon=m C d C \\
& \therefore g \varepsilon=m C \times \frac{4 \pi}{3} \frac{V}{h^{3}} \times \frac{z}{7} \times 2 m \times(2 m \varepsilon)^{1 / 2} \\
&=m C+\frac{4 \pi V}{h^{3}} \times m \times m C=\frac{m^{3} C^{2} 4 \pi V}{h^{3}} \tag{5}
\end{align*}
$$

$$
\begin{align*}
\text { (d) } \frac{\delta N_{j}}{N} & =\zeta(c) d c \quad \frac{g_{j} e^{-\varepsilon j / k T}}{z}=\frac{g(c) d c e^{-m c^{2} / 2 k T}}{2} \\
\therefore \rho(c) & =\frac{m^{3} c^{2} 4 \pi \gamma}{y^{3}} \times \frac{k^{\gamma}}{y} \frac{1}{(2 \pi m k T)^{3 / 2}} e^{-\left(c^{2} / 2 R T\right)} \\
\zeta(c) & =\frac{4 \pi c^{2}}{(2 \pi R T)^{3 / 2}} e^{-\left(c^{2} / 2 \pi T\right)} \tag{6}
\end{align*}
$$

Q4 (a) (i) $S^{\prime}=-k \sum_{i=1}^{\Omega} P_{i} \ln P_{i}$
$k=$ sotitaman's anstant
$\Omega=$ number of system micerstates
$P_{i}=$ pobability of systm bing in its $i-$ th mucrestate.
(ii) Cossier two subeygtime $A \& B$

$$
S_{a}^{\prime}=-k \sum_{i=1}^{\Omega_{A}} P_{i} \ln P_{i} \quad S_{B}^{\prime}=-k \sum_{j=1}^{\Omega_{B}} P_{j} \ln P_{j}
$$

The conbined prob. That system A is in stute $i \quad\left[\begin{array}{l}\text { becouse the states } \\ \text { and system } B \text { is in state is } P_{i j}=P_{i} \times P_{j}\end{array}\right]$

$$
\begin{aligned}
\therefore-\frac{S_{A B}^{\prime}}{k} & =\sum_{i} \sum_{j} P_{i} P_{j}\left(\ln P_{i}+\ln P_{j}\right)=\sum_{i} P_{i} \sum P_{j}\left(\ln P_{i}+\ln P_{j}\right) \\
& =\sum_{i} P_{i}\left(\ln P_{i}+\sum P_{j} \ln P_{j}\right)=\sum_{i} P_{i} \ln P_{i}+\sum_{j} P_{j} \ln P_{j}\left[\sum P_{i}=\sum P_{j}=1\right]
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad S_{A B}^{\prime}=S_{A}+S_{B} \tag{5}
\end{equation*}
$$

(iii) We wish t maximase S^{\prime} subject $k ~ G=\sum P_{i}-1=0$

Method of Lagrange multhpheirs $\Rightarrow \frac{\partial S^{\prime}}{\partial P_{i}}+\frac{\lambda \frac{\partial G}{\partial P_{i}}}{=}=0$

$$
\begin{aligned}
& \therefore \quad-k\left(P_{i} \times \frac{1}{P_{i}}+\ln P_{i}\right)+\lambda \times 1=0 \\
& \Rightarrow \quad \ln P_{i}=\frac{\lambda}{k}-1 \Rightarrow P_{i}=\text { const }=\frac{1}{\Omega}\left[\text { sice } \sum_{i}=1\right]
\end{aligned}
$$

Thues $S_{\text {max }}^{\prime}=-k \sum_{i=1}^{\Omega} \frac{1}{\Omega} \ln \frac{1}{\Omega}=k \ln \Omega$
For an iobloted sypten at eq ${ }^{m}$. The fundamentul patulate stites that all minsstites are equally pobbble, and this is prciesely the condition that maximeces S^{\prime}. In chassical themodyramis, the antapy of an isblated system reaches a makimem at equilibier.
(b) Neid te calculate $\partial_{E}^{2}=\overline{E_{i}^{2}}-u^{2}$

But $\overline{E_{i}^{2}}=\sum E_{i}^{2} P_{i}=\frac{1}{Q} \sum E_{i}^{2} e^{-E_{i} / \sqrt{V_{i}}}$
Now $U=\sum E_{i} P_{i}=\frac{1}{Q} \sum E_{i} e^{-E_{i} \| Q T}$

$$
\therefore \quad Q u=\sum E_{i} e^{-E_{i} l k \pi}
$$

$$
\Rightarrow \frac{\partial}{\partial T}(Q u)_{N, v}=\sum \frac{E_{i}^{2}}{k e^{2}} e^{-\overline{E_{i}} \overline{\bar{i}}}=\frac{Q}{\overline{k_{1}^{2}}} \overline{E_{i}}
$$

$$
\therefore \overline{E_{i}^{2}}=\frac{k T^{2}}{Q} \frac{\partial}{\partial T}(Q u)=k T^{2}\left\{\frac{\partial u}{\partial T}+\frac{u}{Q} \frac{\partial Q}{\partial T}\right\}
$$

$$
=k T^{2} \frac{\partial u}{\partial T}+u^{2}
$$

$$
\begin{aligned}
& \Rightarrow \partial_{E}^{2}=k T^{2} \frac{\partial U}{\partial T}=k T^{2} C_{V} M=k T^{2} C_{V} M \\
& \therefore\left(\frac{\sigma_{E}}{U}\right)^{2}=\frac{k P^{2} V_{V M}}{M^{2} C_{V}^{2} T^{2}}=\frac{k}{N m C_{V}}=\frac{R}{N C_{V}}=\frac{\gamma-1}{N} \\
& \Rightarrow N=\frac{\gamma-1}{\left(\partial_{E} / M\right)^{2}}=0.4 \times 10^{10} \text { ndecales }
\end{aligned}
$$

Examiners' Comment

Q1. Maxwellian velocity distribution, fluxes and averages. Part (a) on obtaining the equilibrium speed distribution and calculating the modal speed was done well. Most also sketched the speed distributions for argon and helium acceptably well. In calculating the momentum flux, no-one saw that this was easily related to pressure so candidates got bogged down in long integrals. There were nonetheless several near-perfect answers.

Q2. Viscosity and non-continuum (slip) flow in an annular channel. Candidates knew how to relate mean-free path to other properties and estimate molecular diameter from the viscosity. The flux matching model was also handled well. However, very few correctly derived the shear stress distribution for the annular control volume (really 1B material) so did not obtain the right velocity distribution.

Q3. Translational energy modes and the Maxwell-Boltzmann distribution. Most students efficiently calculated the density of translational energy states and correctly defined degeneracy. Many struggled to determine the energy distribution from the density of translational states and fewer were able to determine the molecular speed distribution. Several students saw the relationship between the density of states and distribution of speeds, thus providing efficient answers.

Q4. Statistical analogue of entropy fluctuations. The identification of variables and proof of entropy's extensive nature were readily completed by nearly all students who attempted it. Most students were able to show that entropy is a maximum via Lagrange multipliers or by setting the derivative to zero and identifying the point as a maximum. However, few students were able to calculate the RMS fluctuations or provide a viable path to the answer despite this being the approach explicitly shown in one of the lectures. Nonetheless, this was the most popular question with many doing well and several giving perfect answers.

Dr A.J. White \& Prof. A.M. Boies
$8^{\text {th }}$ May 2023

