
SOLUTIONS TO 4A9 Molecular Thermodynamics 2021 
 
Examiners’ comments: 

Q1. Most candidates did very well on this question, showing a thorough grasp of the MFP 
model, and tackling the Sutherland model part of the question very competently. 

Q2. The least popular question, but most of those that attempted it negotiated the derivation 
of Maxwell’s Equations of Change very well, and gave good interpretations of the resulting 
viscous stress terms in the momentum equation. Most marks were lost at the end of part (c) in 
showing that h0 is constant. 

Q3. Most students easily determined the degeneracy in 3a, while a few omitted to provide the 
energy level. Reducing the partition function of a single molecule to the expression given in 
3b using the binomial expansion formula was among the most challenging aspects of the 
exam. A minority of students receiving less than full marks as a result of either an inability to 
formulate the partition function correctly or as a result of errors in identifying the analogous 
terms in the given formula. The expression of the specific heat capacity was found by most 
students in 3c, despite a few missing the simplification found by taking the limit at high 
temperatures. Most students identified the contributions of vibrational potential and kinetic 
energy components to the equipartition theorem.  

Q4. All but a few students were able to determine the constraint in 4ai. There was a mix of 
valid approaches in deriving the maximum entropy for three microstates in 4aii, either by 
finding the maximum from a derivative or by use of Lagrangian multipliers. Most were able 
to show that S’ was extensive for 4aiii, while a few mistakenly demonstrated that S’’ was 
extensive as done in the notes. Almost all students were able to determine the Pi and S’ 
values for an isolated system in 4aiv. A large majority of students were able to use Gibbs’ 
relation to correctly find the derivatives to determine the variance in value for 4bi. Nearly 
half the cohort were able to determine the numerical value for the normalized volume 
fluctuation with a few students not identifying that helium could be treated as a perfect gas.  
 
Dr A.J. White and Dr A.M. Boies 
May 2021 
 
 
 
 
 
 
 
 
 
                .../... 



Q 2 .

22 •  - .  - - - - - .  oczot Pay

↳
JC~o

4 I
• - - - - . sho - PQ7

Net upward flux ,
Fa =

nfzfQH-poitdojaf-ntqfQtx.pt/3aIdoIaa)Fq---nIzpo,XdI
chkz

i. Da = n Pat 5

(6) Molecules with higher kinetic
energy tend

,
on average ,

E

come from further away ,
hence µ 7 pm .

For x ,  - momentum
,

④ = mu ,

4 = µduqu= - Fa = n¥pAmd¥
,

⇒ µ = EL7

For thermal kinetic
energy = m¥ = MET

i
of = -

kdI%= him median
,

⇒ k :

E4F-7CV

Pr = t¥ = Eyther+ = 2¥

For He
, 8=56

,
: Pr = GEE = Iz

6

Alexander White




④ At = mmI
µ mm XI ,

Here we have E note that 7- ' In
.

For  example ,

the simple
" test  molecule " model gives that

rind X = I where d = molecular denial
.

Thus tIµ= ¥ = FE
, ②

i. µ = µ , t Ioo = 19.9×156×52 = 78.1×15
'

hgni 's
"

(d)
dei = d

' ( HX1H

deft Attractive forces make the effective
decimate larger ,

hence X 70
."

it This means that deff decreases with

temperature . this is because the

attractive forces have less impact on× the trajectory when molecules have high
kinetic energy .

We note that 7- ¥ae¥so

µµ= . = ' tN
I theft

i. µ = msxHµo÷ ' %?% .

= 32.2 not kgni 's "

6)



QI
. f  is defined such that

fit
, ai

, a) de
, dude

,
= folk

(a)
is the number of molecules per unit volume in the velocity range

Ci to citdci ( i  
= 1,43 ) at point @i.tj

C) p = [mfdVe = nm ( m = molecular mass

( n = molecules per unit

ui  = In [ eifdvc

Iii) I ht  
= { ME where Ci is the preacher relates

c
'

= cit cites

i. T  
= m⇒tf%¥dNc- it }

" " " C

's G)
LITTLE  C 's

(b) Multiply ihttzmann equation by Q and integrate over all velocities :

•

§¥ an + I÷¥% =KID:c
Noting that aj ,

t & cj are independent :

•

¥ +£t-
- fatal! .

-
d

Because

Put Q = mei  = m( hit G) momentumDisjoined
⇒ It Levitt

Itsuki
)) = 0 g

2g collisions

.

°

. Eaten) t 3,44mi) = - I ;G)



The terms on the RHS correspond E the divergence of the stress components
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