SOLUTIONS TO 4A9 Molecular Thermodynamics 2021

Examiners' comments:

Q1. Most candidates did very well on this question, showing a thorough grasp of the MFP model, and tackling the Sutherland model part of the question very competently.

Q2. The least popular question, but most of those that attempted it negotiated the derivation of Maxwell's Equations of Change very well, and gave good interpretations of the resulting viscous stress terms in the momentum equation. Most marks were lost at the end of part (c) in showing that h_{0} is constant.

Q3. Most students easily determined the degeneracy in 3a, while a few omitted to provide the energy level. Reducing the partition function of a single molecule to the expression given in 3 b using the binomial expansion formula was among the most challenging aspects of the exam. A minority of students receiving less than full marks as a result of either an inability to formulate the partition function correctly or as a result of errors in identifying the analogous terms in the given formula. The expression of the specific heat capacity was found by most students in 3c, despite a few missing the simplification found by taking the limit at high temperatures. Most students identified the contributions of vibrational potential and kinetic energy components to the equipartition theorem.

Q4. All but a few students were able to determine the constraint in 4ai. There was a mix of valid approaches in deriving the maximum entropy for three microstates in 4aii, either by finding the maximum from a derivative or by use of Lagrangian multipliers. Most were able to show that S^{\prime} was extensive for 4aiii, while a few mistakenly demonstrated that $S^{\prime \prime}$ was extensive as done in the notes. Almost all students were able to determine the P_{i} and S^{\prime} values for an isolated system in 4aiv. A large majority of students were able to use Gibbs’ relation to correctly find the derivatives to determine the variance in value for 4bi. Nearly half the cohort were able to determine the numerical value for the normalized volume fluctuation with a few students not identifying that helium could be treated as a perfect gas.

Dr A.J. White and Dr A.M. Boies
May 2021

Q2.
(a)

Net upward fluk, $F_{Q}=\frac{n \bar{C}}{4}\left(\bar{Q}\left(x_{20}\right)-\beta_{Q} \lambda \frac{d \bar{Q}}{d x_{2}}\right)-\frac{n \bar{C}}{4}\left(\bar{Q}\left(x_{20}\right)+\beta_{Q} \lambda \frac{d \bar{S}}{d a_{2}}\right)$

$$
\begin{aligned}
F_{Q} & =\frac{-\frac{n \bar{C}}{2} \beta_{Q} \lambda \frac{d \bar{Q}}{d k_{2}}}{} \\
\therefore D_{Q} & =\frac{n \bar{C}}{2} \beta_{Q} \lambda
\end{aligned}
$$

(6) Mdecules with ingher binctic anegy tand, on werage, t cone from futher awaly, hence $\beta_{k}>\beta_{\mu}$.
For x_{1}-momention, $\overline{\bar{B}}=$ mue,

$$
\tau=\mu \frac{d u_{1}}{d x_{2}}=-F_{Q}=\frac{n \bar{C}}{2} \beta_{\mu} \lambda_{m} \frac{d u_{1}}{d x_{2}} \Rightarrow \mu=\frac{p \bar{c}}{2} \lambda
$$

For Anomal kinetic energy $\bar{Q}=\frac{m \bar{C}^{2}}{2}=m e_{V} T$

$$
\begin{aligned}
& \therefore q=-k \frac{d T}{d x_{2}}=\frac{n \bar{c}}{2} \beta_{k} \lambda m c_{v} \frac{d T}{d x_{2}} \Rightarrow k=\frac{5}{4} \rho \bar{c} \lambda c_{v} \\
& \operatorname{Pr}=\frac{\mu c_{p}}{k}=\frac{p \bar{c} \lambda}{2} \lambda \gamma C_{v} \times \frac{442}{5 p \bar{E} \lambda c_{v}}=\frac{2 \gamma}{5}
\end{aligned}
$$

For He, $\gamma=5 / 3, \therefore \operatorname{Pr}=\frac{2}{5} \times \frac{5}{3}=\frac{2}{3}$
(c) $\frac{\mu_{2}}{\mu_{1}}=\frac{n_{2} m \lambda_{2} \bar{C}_{2}}{n_{1} m \lambda_{1} \bar{c}_{1}}$

Here we have t note that $\lambda \sim 1 / n$. For example, the simple "test molecule" model gives that

$$
n \pi d^{2} \lambda=1 \text { where } d=\text { noteculor diameats. }
$$

Thus $\frac{\mu_{2}}{\mu_{1}}=\frac{\bar{c}_{2}}{\bar{c}_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}$

$$
\begin{equation*}
\therefore \mu_{2}=\mu_{1} \times \sqrt{\frac{600}{300}}=19.9 \times 10^{-6} \times \sqrt{2} \simeq 28.1 \times 10^{-6} \mathrm{gma}^{-1} \mathrm{~s}^{-1} \tag{3}
\end{equation*}
$$

(d)

$$
d_{e f t}^{2}=d^{2}(1+x / \tau)
$$

Attractwe forces make the effective disinter larges, hence $x>0$.
This means that deft decreases with temperature. This is because the attractive forces have loss impact on the trajectory when mokeches have bligh kinetic energy.
We note that $\lambda \sim \frac{1}{\text { nd eff }}$ so $\frac{\mu_{2}}{\mu_{1}}=\frac{\bar{C}_{2}}{\bar{c}_{1}} \cdot \frac{d^{2} e_{1}}{d_{\text {eff }}^{2}}=\left(\frac{T_{2}}{T_{1}}\right)^{1 / 2} \frac{1+x / T_{1}}{1+x / T_{2}}$

$$
\therefore \mu_{2}=19.9 \times 10^{-6} \times\left(\frac{600}{200}\right)^{1 / 2} \times \frac{1+101 / 300}{1+101 / 100} \simeq 32.2 \times 10^{-6} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}
$$

QI. f is defined suck mat $f\left(t, x_{i}, c_{i}\right) d c_{1} d c_{2} d c_{j}=f d V_{c}$
(a) is me mounter of mesecoles pos unit volume in the reloith mange $c_{i} \leftarrow c_{i}+d c_{i}(i=1,2,3)$ at point $\left(x_{i}, t\right)$
(i) $\rho=\int_{-\infty}^{\infty} m f d V_{c}=2 m \quad\binom{m=$ molecular mass }{$n=$ molecules per unit $u l}$
(ii) $u_{i}=\frac{1}{n} \int_{-\infty}^{\infty} e_{i} f d v_{c}$
(iii) $\frac{3}{2} k T=\frac{1}{2} m$ where C_{i} is pecukei velate

$$
\begin{equation*}
\therefore T=\frac{m}{3 k}\left\{\frac{1}{n} \int_{-\infty}^{\infty} c^{2} f d V_{c}-u^{2}\right\} \tag{5}
\end{equation*}
$$

(b) Mustily settsmon equation by Q and intepale ores all velocities:

$$
\int_{-\infty}^{\infty} Q \frac{\partial f}{\partial t} d V_{c}+\int_{-\infty}^{\infty} Q c_{j} \frac{\partial f}{\partial x_{j}} d V_{c}=\int_{-}^{\infty} Q\left[\frac{\partial f}{\partial t}\right]_{-\infty} d V_{c}
$$

Noting that $x_{j}, t \& c_{j}$ are independent:

$$
\begin{aligned}
& \frac{\partial}{\partial t}(n \bar{Q})+\frac{\partial}{\partial x_{j}}\left(n \overline{c_{j} Q}\right)=\int_{-\infty}^{\infty} \dot{Q}\left[\frac{\partial f}{\partial t}\right]_{\text {col }} d V_{c} \\
& \text { Put } Q=m c_{i}=m\left(u_{i}+c_{i}\right) \\
& \Rightarrow \frac{\partial}{\partial t}\left(\rho u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho \overline{\left(u_{j}+c_{j}\right)\left(u_{i}+c_{i}\right)}\right)=0 \\
& \therefore \frac{\partial}{\partial t}\left(e u_{i}\right)+\frac{\partial}{\partial x_{j}}\left(e u_{j} u_{i}\right)=-\frac{\partial}{\partial x_{j}}\left(\rho \overline{c_{i}} \bar{c}_{j}\right)
\end{aligned}
$$

The terns on the rets correspond it the divergence of the stress components ie., RUS $=\frac{\partial}{\partial x_{j}} \alpha_{j}$ alder $\alpha_{j}=-p \overline{C_{i}}$
For $i \neq j$, $\sigma_{i j}$ are the viscous shear stresses, whereas the normal components ($i=j$) include the presser. Thus:
(c) Starting from:

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t}\left\{\frac{f}{2}\left(u^{2}+c^{2}\right)\right\}+\frac{\partial}{\partial x_{j}}\left\{\frac{\rho u_{j}}{2}\left(u^{2}+\overline{c^{2}}\right)\right\}=-\frac{\partial}{\partial j_{j}}\left\{\rho u_{k} \overline{c_{j} l_{k}}+\frac{\left(\overline{c_{i} b^{2}}\right.}{2}\right\}\right)
\end{aligned}
$$

For steady flow, all the $\frac{\partial}{\partial t}$ terms go, and for a Moxutlin velocity distribution (stich is symmetric in $c_{1}, c_{2} \& C_{3}$) the only terms on the RHS shich remain are due the pesere, when $j=k$. ode also chat ae specific i internal energy is $e=\overline{c^{2}} / 2$
Thus $\frac{\partial}{\partial x_{j}}\left\{\rho u_{j}\left(e+\frac{u^{2}}{2}\right)\right\}=-\frac{\partial}{\partial x_{j}}\left(u_{j} p\right)$

$$
\begin{array}{ll}
\therefore & \frac{\partial}{\partial x_{j}}\left\{\rho u_{j}\left(e+\frac{u^{2}}{2}+p / R\right)\right\}=0 \\
\text { or } & \left.\frac{\partial}{\partial x_{j}}\left\{\rho u_{j} h_{0}\right\}=h_{0} \frac{\partial}{\partial x_{j}}\right)\left(u_{j}\right)+\rho u_{j} \frac{\partial h_{0}}{\partial x_{j}}=0
\end{array}
$$

The fist term is zero due to mass continuity ($\bar{\nabla}, \underline{p}=0$) The second term implies ho is constant dong a s / c ie., $\quad \underline{u} . \nabla h_{0}=0$

Q3 (Ass cenis)
(a)

$$
\begin{aligned}
\varepsilon_{j} & =\left(n_{1}+n_{2}+n_{3} \cdots+n_{\omega}+\frac{\omega}{2}\right) h \nu \\
& =j h \nu+\frac{\omega h \nu}{2}
\end{aligned}
$$

g_{j} is given as the number ways j bells can be distuturea between w boxes. This is found by finding the number If distinct arrangements of j balls and $w-1$ petitions.

- \mid •\| • $\|$ eke

No. of possible arrangements if ball and patikais are chistungushdb

$$
=(\omega+j-1)!
$$

This needs te be divided by j ! because the balls are not distinguishable, and by $(\omega-1)$! Ecause reithe are Mention.

$$
\begin{equation*}
\therefore \quad g_{j}=\frac{(\omega+j-1)!}{(\omega-1)!j!} \tag{6}
\end{equation*}
$$

(6) The irbatioud partition function for a singe mobewhe

$$
\begin{aligned}
& \text { is lien by } \\
& Z=\sum_{0}^{\infty} g_{j} e^{-\varepsilon_{j} \mid k_{T} T} \\
& \text { Note the } e^{-\omega \omega / \text { /kT }} \\
& \text { a contact } 2 \text { and dis nat } \\
& =\sum_{0}^{\infty} \frac{(\omega+j-1)!}{(\omega-1)!j!} \phi^{j} \text { there } \phi=e^{-k k} \\
& \text { of. }(x+y)^{-\infty}=\sum_{j=0}^{\infty} \frac{(\omega+j-1)!}{(\omega-1)!j!}(-1)^{j} x^{j} y^{-(w+j)}
\end{aligned}
$$

These are the sane if $x=-\phi$ any $y=1$

$$
\therefore \quad Z_{(\omega)}=(1-\phi)^{-\infty}=\frac{1}{\left(1-e^{-\theta / T}\right)^{\omega}}
$$

Atter.

$$
\begin{aligned}
& \therefore \quad Z_{1}=1+e^{-\theta \cdot / T}+e^{-2 \theta / T}+\cdots \text { no degrerary } \omega=1 \\
&=\sum_{j=0}^{\infty} \phi^{j}=\frac{1}{1-\phi} \\
& \therefore Z_{\omega}=Z_{1}^{\omega}=\left(1-e^{-0 \cdot / T}\right)^{-\omega} \quad \text { becuuse melas } \\
& \text { ore distinguistle }
\end{aligned}
$$

(c) $u=k T^{2} \frac{\partial}{\partial T}(\ln Q)_{N, v} \quad$ wher $Q=\frac{Z_{1}^{\omega N}}{N!}$

$$
\begin{aligned}
\therefore u & =N \omega k T^{2} \frac{\partial}{\partial r} \ln Z_{1} \\
u & =\frac{u}{N m}=\frac{\omega R \theta_{r}}{e^{\theta_{v} / T}-1} \\
c_{v} & =\left(\frac{\partial u}{\partial^{2}}\right)_{v}=\frac{-\omega R \theta_{v}}{\left(e^{\theta_{v} / T}-1\right)^{2}} e^{\theta_{v} / T}\left(-\frac{\theta_{v}}{T^{2}}\right)
\end{aligned}
$$

$$
c_{v}=R \omega\left(\frac{\theta_{r}}{T}\right)^{2} \frac{e^{\theta_{v} / T}}{\left(e^{\theta_{v} / T}-1\right)^{2}}
$$

Let $x=\frac{Q_{0}}{T}$, so $T>Q_{0} \Rightarrow x \rightarrow 0$

$$
c_{v}=\sum_{x \rightarrow 0} R_{\omega} x^{2} \frac{(1+x+\cdots)}{x^{y}+H 0 T}=R_{\omega}
$$

This is consistent with $\frac{R}{2}$ per "squard krm ' sinco there are too equord timis for each mode ($P E \& K E$)
(44) (a)

$$
S^{\prime}=-k \sum p_{i} \ln p_{i}
$$

(i) $\Sigma_{p_{i}}=1$ (The sytrom ned be in ore of its parik neiuertes)

(iii) Consider two subsystens A \& B

A		B
	$P_{A:}$	$P_{B j}$

Probubility A is in state $i \quad P_{i j}=P_{a i} P_{B j}$ and B is in state j

$$
\begin{align*}
S^{\prime} & =-k \sum_{i} \sum_{j} P_{i} P_{j} \ln P_{i} P_{j}=-k \sum_{i} \sum_{j} P_{i} P_{j}\left(\ln P_{i}+\ln P_{j}\right) \\
& =-k \sum_{i} P_{i} \sum_{j} P_{j} \ln P_{j}-k \sum_{j} P_{j} \sum_{i} P_{i} \ln P_{i} \quad \text { becasse } \sum P_{i}=\sum P_{j}=1 \\
& =-k \sum_{j} P_{j} \ln P_{j}-k \sum P_{i} \ln P_{i} \tag{8}\\
& =S_{A}^{\prime}+S_{3}^{\prime} \quad\left(i \cdot e_{1}, S^{\prime}\right. \text { is extensie) }
\end{align*}
$$

(iv) All miciostatis are equally, peboble fo an isdated systom at equil.buic

$$
\begin{equation*}
\therefore P_{i}=\frac{1}{\Omega} \Rightarrow s^{\prime}=-k \sum \frac{1}{\Omega} \ln \left(\frac{1}{\Omega}\right)=k \ln \Omega \tag{2}
\end{equation*}
$$

$$
\text { (6) } \begin{align*}
(1) \sigma_{v}^{2} & =k T\left\{\left(\frac{\partial^{2} u}{\partial v^{2}}\right)_{T}-T\left(\frac{\partial^{2} S}{\partial v^{2}}\right)_{T}\right\}^{-1} \\
T d s & =d u+p d v \\
\therefore T\left(\frac{\partial s}{\partial v}\right)_{T} & =\left(\frac{\partial u}{\partial v}\right)_{T}+p \Rightarrow T\left(\frac{\partial^{2} S}{\partial v^{2}}\right)=\left(\frac{\partial^{2} u}{\partial v^{2}}\right)_{T}+\left(\frac{\partial p}{\partial v^{\prime}}\right)_{T} \\
\therefore \sigma_{v}^{2} & =k T\left\{\frac{\partial^{2} u}{\partial v^{2}}-\frac{\partial^{2} u}{\partial v^{2}}-\left(\frac{\partial p}{\partial v_{T}}\right]^{-1}=-k T\left(\frac{\partial v}{\partial p}\right)_{T}\right. \tag{4}
\end{align*}
$$

(ii) For He - assume perfect gas

$$
\begin{align*}
& \therefore V=\frac{m R T}{P} \Rightarrow\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{m R T}{P^{2}}=-\frac{V}{P}= \\
& \therefore \mathcal{V}_{v}^{2}=\frac{m R T^{2} k}{P^{2}} \quad \text { mow } V_{0}=\frac{m R T}{P} \\
& \therefore\left(\frac{\sigma_{v}}{V}\right)^{2}=\frac{V^{2} R^{2} J^{2} k R^{2}}{R^{2} m^{2} R^{2} T^{2}}=\frac{k}{m R} \quad R=k / m^{1} \\
& \therefore\left(\frac{G_{v}}{V}\right)^{2}=\frac{1}{N} \Rightarrow \frac{Q_{v}}{V}=\frac{1}{\sqrt{N}} \\
& N=\frac{0.1}{4.0} \times 6.023 \times 10^{+23} \Rightarrow \frac{G_{v}}{V} \simeq 8.15 \times 10^{-12} \tag{5}
\end{align*}
$$

4A9 Q4 (a) (ii) - additiond aib

$$
\begin{gathered}
\phi=-s^{\prime} / k=\sum p_{i} \ln p_{i}=p \ln p+q \ln q+(1-p-q) \ln (1-p-q) \\
\frac{\partial \phi}{\partial p}=\lambda+\ln p-\gamma-\ln (1-p-q)=0 \\
\Rightarrow \quad p=1-p-q
\end{gathered}
$$

simiderly,

$$
\begin{aligned}
& q=1-p-q \\
& \therefore \quad \underline{p=q=1 / 3} \Rightarrow \begin{array}{l}
s^{\prime}=-3 \times k \times 1 / 3 \times \ln 1 / 3 \\
s^{\prime}=k \ln 3
\end{array}[4]
\end{aligned}
$$

