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The slip velocity is defined by extrapolating the velocity profile through the free-molecule
(or Knudsen) layer to the surface, keeping the velocity gradient du/dy the same. The ‘slip

velocity’ is thus distinct from the actual velocity at the surface (which is of no real interest). [10%]

Assuming molecules make their last collision at y = A before striking the plate :

x-momentum flux incident on plate = Af; = pC Uy + ﬂ.ﬂ
4 slip dy

Assuming molecules are reflected diffusely (i.e., no preferential direction) :

x-momentum flux reflected from plate = 4, = 0

Shear stress on the plate, 7 = M; -~ M, = £[uwp + A%]

4
C

In the continuum region y > A4, 7T = #d_u - pCAdu

& 2 &
Assuming the shear stress is uniform, - Uggiy + ,1@ _ pCAadu

4 dy 2 dy
. . e du 0
Hence, the slip velocity is given by,  uy, = 1; [20%]

This result is approximate because the transition from the free-molecule to the continuum

layer actually occurs over a finite distance. To get an ‘exact’ result it would be necessary to

solve the Boltzmann equation in the near-wall region. [5%]
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(b)

r+£¢§z - T =0 - £=0 - 7 = constant
dy dy

This result is true for all flow regimes (continuum and non-continuum) because no specific
model has been used for T (7 = £ du/dy only holds when the N-S equation is valid).

(¢) The N-S equation is valid for 0 <y <L so that,

du T T T
— = — - u = —y+c0nst. — u = —y+us,,-p (u = ugp at y=0)

dy U 2
At y=L, u=U-—ugy; and hence,

¢ = BU _2H4gp

TL
U—ushp = —+u31,.p 17 I7

Now, ugy, = Adu/dy = At/u. For continuum flow, uyp =0 and so 7, = pU/L . Hence,

1'=1'0—2}“—T=1'0—21Kn > =2
1+ 2Kn

The mass flowrate is given by m = pul where u is the mean velocity. The velocity profile
is linear from u=uyp aty =0 to u=U—ugpaty=_L. Hence, u=U/2 and m = pUL/2.
This expression is the same as for continuum flow. However, although U and L are the same,

the density for slip-flow will be lower than for continuum flow and so m will be lower.

(d) The approach for slip-flow [which is based on the result of part (a)] is not appropriate
for transition flow because A = L and so the Knudsen layer would occupy much of the
channel.

[15%]
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2. (a) The energy of a diatomic molecule of mass m and absolute velocity (¢, ca, ¢3) is

m(cf+c§+c§)
2

E = + E"n‘
where Ej,, is the molecular internal energy (i.e., in this case due to rotation of the molecule).

The peculiar velocity of a molecule is defined by C; = ¢; — ¢; = ¢; — u; and hence,

miu +C Y’ +CI+ G | mui | m(C] +C;+C3)

E= 2 int =T 2

+mC, + E,,
Averaging over all molecules and noting that (CZ +C# +C2) = C? and C, = 0 gives,

2 2
— C -
15:%#"2 + £,

Temperature is defined in terms of the mean translational KE of a molecule by,

T mC?
2 2

We_assume that a diatomic molecule at around ambient temperature has 2 activated
rotational, and zero activated vibrational, degrees of freedom. Hence, by the equipartition
principle (an average energy of AT/2 for each activated degree of freedom), E,, = kT .
Thus,
= mu? 3T mu?  SkT
E=—"21+—/7+ —L + ==

AT =
2 2 2 2

f=5 [30%]

(b) Assume molecules make their last collision at x; = £ A and that they acquire there, on

average, the local mean molecular energy. At x, =% A4 ,

ar w(EA) = uy(0) + A%

T(£A) = T(0) AE e

The mean molecular energy at x, = = A is thus given by,

2

— k ar m du
= 2Ty 22| + Zlu0) £ 221
Es, le:() A 2}+2|:u1() A 2:|

The energy flux through unit area of the plane x; = 0 from above (+) and below (-) s,



4 2 2

— 2
nC k ar m du
—<f=|TO £ A—| + — 0)+ 11

{fz[() dx] z[“l() dxH
The net energy flux per unit area in the positive x; direction is therefore,
nC ar du
—| = fkA"— - 2mAu, (0)—2
4 { 4 dx, il )dx2:|

Noting that nm = p and k= mR where R is the gas constant per unit mass,

Energy flux per unit area = _ﬂp_Cﬂ.iT_ - pCﬂ.ul(o)dul
2 2 dx 2 dx,
Hence,
4 = %__pzﬂ. and B = pgﬂ. u,(0) [40%]

(¢) The term f R/2 is the constant volume specific heat capacity ¢, and 4 is the simple
hard sphere kinetic theory result for the thermal conductivity K. The kinetic theory result for
the viscosity is ¢ = p CA/2 and u dui/dx; = 11, where 713 is the shear stress. Hence,
dar du dar
Energy flux per unitarea = —A—— - B—2% = —K—— — u,(0)1
gy p dx, dx, x, 1(0) 71,
Macroscopically, the first term is the heat flux due to conduction and the second term is the

work done by the shear stress against the mean velocity. [15%]

(d) The kinetic theory result for the viscosity is quite close to the Chapman-Enskog value
and so we would expect the shear stress work term to be quite accurate. The simple theory
for the thermal conductivity does not agree well with the Chapman-Enskog result because
the calculation of the translational energy flux ignores the fact that molecules with higher
velocities tend to come from greater distances. The result could be improved by including

the Eucken modification.
[15%)]



3. (@@ The oscillators are independent so the total energy is £ =(n, +n,)hv and
therefore (n; + n2) = 5. Thus, n; can take on six possible values (0 to 5) for each one of
which »; will be fixed at 5 — ) . There are therefore six microstates.

(a) (ii) The quantum numbers », , n; ... ng¢ must sum to M so we consider M balls
and K — 1 partitions, as shown:

0000 | 000 | 00000 | ... | 000
—— ~ ———————

n n m nye

There are therefore (M + K — 1) things, but the M balls are indistinguishable and the (K - 1)

partitions are also indistinguishable. Thus,

_(M+ K- . B B
Q——M!(K—l)! whence A =(M + K~1), B=Mand C = (K- 1).
(b) (i) Assume that the entropy is equal to the statistical analog of entropy and that both A
and K are >> 1. Thus,

S=kinQ=k{ln(M+K—-1) — In M1 — In(K-1)1}
~k{(M+K=DIn(M+K-1)-MinM—(K=DIn(K -1} —k{M+K~1-M-K+1}

=k{M1n[M:l]+(K_l)m[M]}
M K-1

with M = FE/hv and K = 3N (three oscillators per atom corresponding to three directions).
In the high temperature limit we can also assume that A/ >> K so

S = k{Mln[1+—K—J+ Kln[—%]}
M K

E
=3Nk+3Nkl
'{ 3th}
(b) (ii) For a closed system, 7dS = dE + pdV and therefore:

1 98 =§Lk = E=3NkT=3mRT = ¢,=3R (m total mass, R=Kmyom)
T \J0E), E

This gives an R/2 contribution to each squared term (PE and KE) associated with oscillations
for each of the three directions, i.e., ¢, = 6xR/2, consistent with the equipartition principle.

[2]

(6]

[7]



4.(a) Inthe ground state all »; = 1, so for 4 times the ground state energy,
n’ = an =4x3=12. Possible states are therefore as shown below:

ny " n3 n Degeneracy, g»
1 1 1 1
1 1 2
1 2 1 6 3
2 1 1
1 2 2
2 1 2 9 3
2 2 1
1 1 3
1 3 1 11 3
3 1 1
2 2 2 12 1
[4]
) pV 10°x107 »
b ~PY =1.81x10” molecul
® O KT~ 138x102 x 400 e
(i) The number of states with energy less than or equal to ¢ is given by 1/8 of the
volume of a sphere of radius »:
LI i " any (2"
83 3K
. . 3kT
The average energy of a molecule is €= 5 hence
4ny 4% 107 3x1.38x107 x400x 4
I(e)=—5(mkT)" = ¥ =1.66 x 107 stat
©)= 5 Ok = 6626 <107y comxior ) LooxID sates
There are approximately 10° states for each molecule so most states are empty and the
probability of finding two or more molecules in the same states is negligible. (8]
.. . 14 .
(c) Writinge= mC* /2 gives I'(C)= igt;}—(mC)J (no. of states with speed <=C)
Thus,
dU  4n¥Vm'C’
C)y=-—=2""">
&) dC I [5]




_ 2
(d) The term exp( mg [2kT) is the probability that a molecule is in a particular energy

state that has a speed C. To obtain the probability that a molecule has a speed in the range C

to C + dC then we multiply this term by the number of states in this speed range, g(C) dC,
but this will only be correct if the probability of there being more than one molecule in the
same state is vanishingly small. From the answers to part (b) the expression therefore

becomes inaccurate when p is high and (especially) when T is low.
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