
ENGINEERING TRIPOS PART IIB 2OI4

MODULE 4A9 - MOLECULAR THERMODYNAMICS

SOLUTIONS

1.(a)
v

Y: A

y=o

The slip velocity is defined by extrapolating the velocity profile through the free-molecule

(or Knudsen) layer to the surface, keeping the velocity gradient du/dy the same. The 'slip
velocity' is thus distinct from the actual velocity at the surface (which is of no real interest). t10%]

Assuming molecules make their last collisioeat y = i. before striking the plate :

I-momentum flux incident on plate : Mi = *(r-- - 
^*)

Assuming molecules are reflected diffusely (i.e., no preferential directioa) :

.r-momentum flux reflected from plate : M, = [

Shear stress on the plate, t = Mr - M, = *(",* - 
^*)

Inthe continuumregion y> ),, t = t + = *+dyzdy

Assuming the shear stress is uniform, lc ( - da \
+ ["''*n*)=

Hence, the slip velocity is given by, urm = L*'dy

pCl du
2dv

This result is approximate because the transition &om the free-molecule to the continuum
layer actually occurs over a finite distance. To get an 'exact' result it would be necessary to

solve the Boltzmann equiltion in the near-wall region.
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(b)

The only force acting on the elementary control volume is the shear stress. Hence,

?.#*Y-,&=o
__) &=o

dy
f, : constant

This result is true for all flow regimes (continuum and non-continuum) because no specific

model has been used for r (r = pduldy only holds when the N-S equation is valid). U5%1

(c) The N-S equation is valid for 0 <y < I so rhat,

duT-:- = - -+ u='! +const. -) u=Z+usfip {u:r,t"ripaty=0)dvttpp

At y : L, u: (J - ilstie a:rd hence,

* _ pU Zlturup
L 

-- LL

Now, 2"1" = Ldulil = 1r lp. For continuum flow, ltstip:0 and so fs = ttu lL. Hence,

zlr _ ,ta y_ T6
T =To - -':' -1,s*2rKn -.; 7 --" L " 1+2Kn

{2a%1

The mass flowrate is given by rh = ptl where il is the mean velocity. The velocity profrle

islinearfrom u:ilstip aty:0 to u:U-\1ip&ty:I. Hence,u=Ul2 and *= p{lLf2.
This expression is the same as for continuum flow. However, although U andl are the same!

the density for slip-flow will bs lower than for continuum flow and so rn will be lower. U5%]

(d) The approach for slip-flow [which is based on the result of part (a)] is not appropriate

for transirion flow because 2,. * L and so the Knudsen layer would occupy much of the

channel.
u5%)

cLg -tlsfir = 
T*usfip 
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2. (a) The energy of a diatomic molecule of mass m atdabsolute velocity (c6 c2, ca) is

s = r{,tr +11+"i) * 8r,,
2

where Eintis the molecular internal energy (i.e., in this case due to rotation of the molecule).
The peculiar velocity of a molecule is defined by Ci - c1 - di = ci - u, a*dhence,

, = W * Ein, = + * mgl +rcl+c|) * mc, * Eio,

Averaging over all rnolecules and noting that (Cf +C| +C!7 = C2 and di = O gives,

F *rl -*C -uu =;* z 
*Lint

Temperature is defined in terms of the mean translational KE of a molecule by,

3kT - ^C22
We--assume that a diatomic molecule at around ambient temperature has 2 activated

rotational, and zero activated vibrational, degrees of freedom. Hence, by the equipartition
principle (an average energy of kTl2 for each activated degree of freedom), E,n, = kT .

Thus,

E=$*ry+w=4-+ -* f=s t3o%j2222

(b) Assume molecules make their last collision at x2* l. X, and that they acqirire there, on
average, the local mean molecular energy. At x2 = *A ,

r(th) = r(o) t L+
dxz

ur(Xt,) = ilr(g) f X,*
dxz

The mean molecular energy ot xr= t,l, is thus given by,

Ext = t*lrot*L+1* {[,,101 ,L+1'"21 d*z) 21"' d*z)

The energy flux tfuough unit area of the plane 12 : 0 from above (+) and below (-) is,



*1, *1, ot * tff\ .,'l*t'r - I ff]' ]
The net energy flux per unit area in the positive x: direction is therefore,

@l-tr^{ - zm).u1otfuf
4 L' dxz "'d*z)

Noting that nm: p *nd k: mR where R is the gas constant per unit mass)

Energy fluxperunitarea : ++# ff"rfrlff
Hence,

n=+P!L and a=291ur1o1222' va%1

(c) The term f Rlz is the constant volume specific heat capacity c, and ,4 is the simple

hard sphere kinetic theory result for the thermal conductivity r(. The kinetic theory result for
the viscosity is ;r = pe elZ and p darldxz: a2 whers 62 is the shear stress. Hence,

Energyfluxperunitarea = -^#-r* = -Kt*u1(o)ry

Macroscopically, the first term is the heat flux due to conduction and the second term is the

work done by the shear stress against the mean velocity. [5%]

(d) The kinetic theory result for the viscosity is quite close to the Chapman-Enskog value

and so we would expect the shear stress work term to be quite accurate, The simple theory

for &e thermal conductivity does not agree well with the Chapman-Enskog result because

the calculation of the translational energy flux ignores the fact that molecules with higher

velocities tend to come &om greater distances. The result could be improved by including

the Eucken modification.
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3. (a) (i) The cscillators are independent so the total energy is E = (n,+ nr)t* and
therefore (ry + nz) = 5. Thus, rr1 clto take on six possible values (0 to 5) for each one of
which n2will be fixed at 5 - rr . There are therefore six microstates.

(a) (ii) The quantum numbers flt , /t2... ns must sum to M so we consider Mballs
and K* 1 partitions, as shown:

oooo I ooo i ooooo i ......... I ooo

- 
-

q\n!nt

There are therefore {M + (- 1) things, but the Mballs are indistinguishable and the (f - 1)

partitions are also indistinguishable. Thus,

p=Pr!:J)! rvhence A:{M+ K-1), B: Mand,c:(r-1).Mt{K-t)t

(b) (i) Assume that the entropy is equal to the statistical analog of entropy and thal both M
andKare>> 1.Thus,

,S=&ln(.l= k{ln{M+l(-1)! -lnM! - ln(rK-1)!}

= k{( M + K - l}ln( M +,( - 1) - M Ln M - { K - l) In(r< - 1)l - k $ut + x * I - M - K + 1}

= kw h(y#).," _, r'^ [qir}
with M : E / hv and J( : 3i/ (three oscillators per atom corresponding to three directions).
In the high temperature limit we can also assume that M >> tr( so

12)

t6l

s = r{urn[ ,.#). 
" 
-[#),

=3Nk+3NkL"f 
E )

\3Nhv ) t7l

(b) (ii) For a closed system, TdS = dE + pdl and therefore:

l=fg) =tY ::+ E=3Nkr=3mRT s c,,=3R (mtotalmass, R:k/mu1o )r [as), E

This gives an R/2 contribution to each squared term (PE and KE) associated with oscillations I5t
for each of ths three directions, i.e., cu:6xR2., consistent with the equipa*ition principle. L-r
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4.(a) In the ground state all ni = l, so for 4 times the ground state energy,

,' =2r? = 4x3= l2 . Possible states are therefore as shown below:

t4l

(b) (i) N = Pv - lOu x l--0-3 
= l.8l x l02r moleculeskT 1.38 x l0-" x 400

(ii) The number of states with energy less than or equal to e is given by 1/8 of the

volume of a sphere of radius n:

r(e) = !, q: 
( t*('*')''' = !L1rrn1"

8 3[ h'. ) 3h''

The average energy of a molecule is E' =Y, hence

I'(e )= {p.tr;"' = 4rxlf ,, ,,3x 
l'39I-l-0{r I-400x4)''' = 1.66x I02ssrates

3h' ' 3x(6.626x10-'")' ' 6.023x l0-'

There are approximately 105 states for each molecule so most states are empty and the

probability of finding two or more molecules in the same states is negligible.

(c) Writing e: mC /2 gives I'(C) = ff<mc)' (no. of states with speed <:C)

Thus,
df 4xVmtC=

8(c)= dC= h,

t8l

tsl



(d) The term *ry,,-is the probability that a molecule is in a particular erergy

state that has a speed C. To obtain the probability that a molecule has a speed in the range C
to C + dC then we multiply this term by the number of states in:his speed range, g(C) dC,

but this will only be correct if the probability of there being more than one molecule in the

same state is vanishingly small. From the answers to part (b) the expression therefore

becomes inaccurate whenp is high and (especially) when Zis low. t3l
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