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EGT3

ENGINEERING TRIPOS PART IIB

Friday 30 April 2021 9.00 to 10.40

Module 4A9

MOLECULAR THERMODYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated

in the right margin.

Write your candidate number not your name on the cover sheet and at the top of

each answer sheet.

STATIONERY REQUIREMENTS

Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed.

You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of

the exam.

The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf

containing all answers.
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1 Consider an ideal gas and let Q̄ be some mean molecular quantity (measured per

molecule) which varies only in the x2 direction, as shown in Fig. 1. Molecules crossing

an arbitrary plane x2 = x20 may be assumed to transport a value of Q̄ corresponding

to a location βQλ from the plane, where λ is the molecular mean free path and βQ is a

constant that depends on the nature of Q̄. It may also be assumed that the one-sided flux

of molecules crossing the plane (per unit area and per unit time) is given by nC̄/4, where

n is the number density of molecules and C̄ is the average molecular (peculiar) speed.

(a) Stating any other assumptions, show that the net flux FQ of Q̄ transported through

the plane in the positive x2 direction (per unit area and per unit time) is given by

FQ = −DQ
dQ̄

dx2

and find an expression for DQ in terms of the quantities defined above. [25%]

(b) Experiments show that for the transport of x1-direction momentum βQ ≃ 1, whereas

for the transport of the random (thermal) component of kinetic energy βQ ≃ 5/2. Explain

briefly the reason for the difference in these two values and determine expressions for the

dynamic viscosity µ and thermal conductivity k valid for ideal monatomic gases. Hence

estimate the Prandtl number for helium. [30%]

(c) The value of µ for helium at 1 bar and 300 K is 19.9 × 10−6 kg m−1s−1. Estimate

its value at 2 bar and 600 K on the basis of the above model. [15%]

(d) In reality, intermolecular forces of attraction ‘soften’ the molecules such that their

effective diameter deff depends on the temperature T . It may be shown that, to a good

approximation

d2
eff
= d2

(
1 +
χ

T

)

where d is the actual molecular diameter and χ is a constant.

(i) With the aid of a sketch, explain whether χ is positive or negative. Explain

also the consequent trend in deff with temperature.

(ii) For helium |χ | = 101 K. Obtain a revised estimate for µ at 2 bar and 600 K. [30%]
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2 Consider a monatomic ideal gas for which the molecular velocity distribution f is a

function of time t, the spatial coordinates xi (i = 1, 2, 3) and the corresponding absolute

molecular velocity components ci.

(a) Describe how f is defined and determine integral expressions for the following

quantities at a fixed point in space and time:

(i) the gas (mass) density, ρ;

(ii) the mean molecular (bulk) velocity components, ui;

(iii) the kinetic temperature, T . [20%]

(b) The Boltzmann equation for the evolution of f may be written in the form

∂ f

∂t
+ c j
∂ f

∂x j
=

[
∂ f

∂t

]

coll.

where the term on the right-hand side is due to molecular collisions. Starting from this

equation, derive an expression for the evolution of the mean value Q̄ of some general

molecular quantity Q (measured per molecule). Hence, with a suitable choice of Q, and

by splitting the absolute molecular velocity into its mean and peculiar components (i.e.,

ci = ui + Ci), show that the momentum equations take the form

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j ) = RHS

where the RHS (right-hand side) comprises terms to be determined. Find these terms and

provide their physical interpretations, distinguishing cases for which i = j and i , j. [40%]

(c) A similar analysis to that of part (b) leads to the energy equation

∂

∂t

{ ρ
2
(u2
+ C2)

}
+

∂

∂x j

{
ρu j

2
(u2
+ C2)

}
= −

∂

∂x j



ρukCjCk +

ρCjC
2

2




where u2
= u2

1
+ u2

2
+ u2

3
and C2

= C2
1
+ C2

2
+ C2

3
. Show that if the flow is steady and

the molecular velocity distribution is Maxwellian this equation simplifies to constant h0

along streamlines, where h0 = h + u2/2 and h is the specific enthalpy. [40%]
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3 (a) The vibrational energy of a molecule with w independent vibrational energy

modes, relative to its ground state, is given by

ǫn = (n1 + n2... + nw) hν

where h is Planck’s constant, ν is the classical oscillation frequency and {n1, n2, ... nw} is

a set of non-negative quantum numbers that characterise the molecule’s vibrational state.

Determine an expression for the j-th vibrational energy level ǫ j , where j = 0, 1, 2, ... etc.,

and the levels are ordered such that ǫ j > ǫ j−1. By analogy with the distribution of balls

into boxes show that the degeneracy of this energy level is given by

g j =
(w + j − 1)!

j!(w − 1)!
[25%]

(b) The binomial expansion formula for a negative integral power is

(x + y)−m
=

∞∑

r=0

(m + r − 1)!

r!(m − 1)!
(−1)r xr

y
−(m+r) (valid for |x | < y)

Making use of this expression, or otherwise, show that the partition function for a

single molecule with w vibrational energy modes in contact with a thermal reservoir

at temperature T is given by

Zw =
1

(1 − e−θv/T )w

where θv = hν/k and k is Boltzmann’s constant. [40%]

(c) The molecules of a particular ideal gas possess w = 3 independent vibrational

energy modes. Assuming that these modes are also independent of any translational and

rotational energy modes, determine the vibrational contribution to the constant volume

specific heat capacity of the gas as a function of temperature. Find the value of this

contribution in terms of the specific gas constant R when T ≫ θv and show that this value

is consistent with the equipartition principle.

You may use without proof the following expression for the internal energy

U = kT2

(
∂

∂T
ln Q

)

V, N

where Q is the system partition function, V the volume and N the number of molecules. [35%]
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4 (a) The statistical analogue of the entropy of a system is given by

S′ = −k

Ω∑

i=1

Pi ln Pi

where k is Boltzmann’s constant, Pi is the probability that the system is in its i-th microstate

and Ω is the number of possible microstates.

(i) What constraint applies to the probabilities Pi? [5%]

(ii) Derive the conditions that maximise S′ for a system that has three microstates

and determine this maximum value. [20%]

(iii) Show that S′ is an extensive property. [20%]

(iv) What can be said about the values of Pi for an isolated system at equilibrium?

Simplify the expression for S′ for such a system. [10%]

(b) A closed system comprising a gas is maintained within a cylinder and piston

arrangement, as shown in Fig. 2. The cylinder walls are perfectly conducting and the piston

is light and frictionless such that the gas remains in thermal and mechanical equilibrium

with the surrounding atmosphere. Under these conditions it may be shown that fluctuations

in gas volume are given by

σ2
V =

〈
(V − V0)

2
〉
= kT

{(
∂2U

∂V2

)

T

− T

(
∂2S

∂V2

)

T

}−1

where V0 is the equilibrium volume of the gas and U, S and T are its internal energy,

entropy and temperature respectively.

(i) Starting from the Gibbs’ relation for a closed system TdS = dU + pdV , show

that, irrespective of the type of gas, the above expression simplifies to

σ2
V = −kT

(
∂V

∂p

)

T

where p is the pressure. [25%]

(ii) Calculate the normalised volume fluctuation σV/V0 for a system comprising

0.1 g of helium. Take the atmospheric conditions as T0 = 300 K and p0 = 1 bar. [20%]
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ANSWERS 
 

Q1. (b) 2/3 

 (c) 28.1x10–6 kg m–1 s–1 

 (d) 32.2x10–6 kg m–1 s–1 

 

Q4. (b)  (ii) 8.15x10–12 

 
 


