SOLUTIONS TO 4A9 Molecular Thermodynamics 2022

Examiners' comments:

Q1. Relatively few candidates got part (a) completely correct, with many forgetting the rotational energy for N_{2}. Part (b) (calculating and interpreting various molecular averages and fluxes for a Maxwellian distribution) was done well, and many students made good attempts at computing the one-sided kinetic energy flux in part (c), though few got exactly the correct result.

Q2. Although not especially popular, most candidates that attempted this question showed a good knowledge and understanding of Knudsen effects and were able to apply the fluxmatching method to find the slip velocity. The greatest difficulties were in applying the momentum equation to the flow in a circular tube (1B material).

Q3. A significant fraction of those attempting this question were able to derive the ideal gas relations from the Helmholtz function and partition function, and to correctly identify the statistical equivalents of heat and work transfers. The last section, relating to the changes in molecular distribution over different energy states for an isentropic process, was not done well, with few candidates making much headway.

Q4. Most candidates had a good grasp of the different constraints applying to the canonical and microcanonical ensembles, and many were able to apply Lagrange multipliers to maximise the (statistical) entropy. Fewer were able to apply similar analysis to determine the distribution of microstates for a system in contact with a thermal reservoir. There were nonetheless several perfect or near-perfect attempts at this question.

Dr A.J. White
May 2022

Q1. (a) Per macule, $\bar{e}=F \frac{k T}{2}+\frac{1}{2} m V^{2}$

$$
\begin{align*}
& =5 \frac{k T}{2}+\frac{1}{2} \frac{k}{R} V^{2} \\
& =\left(5+\frac{350}{2}+\frac{100^{2}}{2.297}\right) k=1.23 \times 10^{-20} \mathrm{~J} \tag{2}
\end{align*}
$$

$\begin{aligned} & \text { (i) fraction as molecular } \\ & \text { translational KF }\end{aligned}=\frac{3 / 2 \times 350}{891.8}=0.59$
(ii) fraction as bulk $=\frac{1 / 2100^{2} \times \frac{1}{297}}{891.8}=0.0189$
flow KE
(b) (i) $I=n m=P$ the density $=\frac{p}{R T}=\frac{10^{5}}{297.350}=0.962 \mathrm{kgm}^{-3}$
(ii) $I=\bar{e}_{1}$ the average velocity $=100 \mathrm{mes}^{-1}$
(iii) $I=\frac{1}{2} \overline{C_{2}^{2}}$ the average $K E$ per unit mass associated with randers translational motion in the x_{2} direction. By equipatition this is $R T / 2=\frac{297 \times 350}{2}=51.98 \mathrm{~kJ} / \mathrm{kg}$.
(v) $I=\rho \overline{C_{1} C_{2}}$ this is the negation of the viscacs sties, σ_{12}. On the centeline of the nipple be velocity distribution is makwellion so $C_{1} \& C_{2}$ are uncomelated (here is no sheer sties). Thus $I=0$
(v) $I=$ the net flax of random translutiad KE in the x_{1} direction due t molecular motion. This is peportionial to the heat flux, q_{1}. It is zees due t the symmetry of f.
(c)

$$
\begin{aligned}
F & =\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 12 m c_{3}^{2} c_{3} f d c_{1} d c_{2} d c_{3} \\
& =\frac{\rho}{2 \beta^{3} \pi^{3 / 2}} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} c_{3}^{3} e^{-\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right) / \beta^{2}} d c_{1} d c_{2} d c_{3}
\end{aligned}
$$

whee $\beta=\sqrt{2 R T} ; \quad$ put $x_{i}=C_{i} / \beta$.

$$
\begin{aligned}
\Rightarrow F & =\frac{\rho \beta^{3}}{2 \pi^{3 h}} \int_{0}^{\infty} x_{3}^{3} e^{-x_{3}^{2}} d x_{3} \int_{-\infty}^{\infty} e^{-x_{2}^{2}} d x_{2} \int_{-\infty}^{\infty} e^{-x_{1}^{2}} d x_{1} \\
& =\frac{\rho \beta^{3}}{2 \pi^{3 h}} I_{3}\left(2 I_{0}\right)^{2}=\frac{\rho \beta^{3}}{2 \pi^{3 /}} \times \frac{1}{2} \times \pi \\
& =\frac{\rho}{4} \cdot 2 R T \cdot \sqrt{\frac{2 R T}{\pi}}=\left(\frac{\rho \bar{c}}{4}\right) R T=F_{M}^{+} \cdot R T
\end{aligned}
$$

The mean value of $c_{3}^{2} / 2$ carried by the one-sided mass fleer is thus RT $(\approx 104 \mathrm{~kJ} / \mathrm{Rg})$ which is twice the mean value evaluated in part (b)(iii). This is because the KE fleet (as opened te the average value of $K E$) is dominated by higher values of e_{3}.

Q2. (a) $k_{n}=\lambda / l$ whoc λ is the mblecubr mean fre path and l is a suittble length senle for the flow. It chanotewies depurturs from conticuem thoo. prosinnt egines are:
Continumen ($k_{n} \ll 1$). Cartimimen(Nusier-stheas) equations apply, with no-slip at solid boandaries.
sip repine ($0.01<k_{n}<0.1$). Conitiumin oquatiois nay be assumed to oceur thoughant mat of the floo, but with reloity dip at boundaice.
Transitioi ($k_{n} \sim 1$). Continion equatiois no loyger apply, but there are still segnificant edissoins between moleculer. Difficilt to analgse!
Eree-mbecule $\left(k_{n} \gg 1\right)$. Thee are very fros collisioins betionen mdecches, conpand at allisiois with boundaies.
(b) (i) The mean fre puth is given apposimately by $n \pi d^{2} \lambda=1$

Mare precisely $\lambda=\frac{1}{n \pi d^{2} \sqrt{2}}$

$$
\begin{equation*}
\therefore k_{n}=\frac{\lambda}{D}=\frac{k T}{D p \pi d^{2} \sqrt{2}}=\frac{1.38 \times 10^{-23} \times 300}{\pi \sqrt{2}\left(0.37 \times 10^{-7}\right)^{2} 0.0002} \quad 1=\frac{34}{p} \tag{4}
\end{equation*}
$$

For K_{n} in range 0.01 to $0.1, p$ is range 340 Pa to 3.4 kPa
(ii)

Usip definid by extraplation te wall from $y=\lambda$

Thus $\quad u_{\lambda}=u_{\text {sip }}+\lambda\left(\frac{\mu u e}{d y}\right)_{\omega}$
Momention flecx to wall $=\left(2 \pi r_{0}\right) \frac{p-\bar{c}}{4} u_{\lambda}$ [por unit bugth of tate]
momention flux foon wall $=0$ (diffuse reflection)

$$
\begin{aligned}
\text { Net nomenteun flues to wall } & =\left(2 \pi r_{0}\right) \frac{\rho \bar{c}}{4} u_{\lambda} \\
& =\text { shear force at } y=\lambda \\
& =\left(2 \pi r_{0}\right) \mu\left(\frac{d u}{d y}\right)
\end{aligned}
$$

$$
\begin{align*}
\therefore \quad \text { (2sto } \frac{p \bar{C}}{4} u_{\lambda} & =(2 \pi r 0) \frac{\rho \bar{c}}{2} \lambda\left(\frac{d u}{d y}\right)_{\omega} \\
u_{\lambda} & =u_{s}+\lambda\left(\frac{d u}{d y}\right)_{\omega}=2 \lambda\left(\frac{d u}{d y}\right)_{\omega} . \\
\therefore \quad u_{s}=\lambda\left(\frac{d u}{d y}\right)_{\omega} & =-\lambda\left(\frac{d u}{d r}\right)_{\omega a l l} \quad(y=R-r) \tag{6}
\end{align*}
$$

(iii)

Floo is "fully deneliped" so u is only fu (t)

$$
\begin{aligned}
& \pi r^{2} \delta p=2 \pi r \delta x \tau \\
& \Rightarrow r=\frac{r}{2} \frac{d p}{d x}
\end{aligned}
$$

$$
\begin{align*}
\therefore \quad \frac{d u}{d r} & =\frac{r}{2 \mu} d_{p}=-\frac{r}{2 \mu} \frac{\Delta p}{L} \\
u & =C-\frac{r^{2}}{4 \mu L} \Delta p \tag{1}\\
u_{\text {sii }} & =C-\frac{R^{2}}{4 \mu L} \Delta p
\end{align*}
$$

but $u_{\text {sLip }}=-\lambda\left(\frac{l u}{d r}\right)_{R}=\frac{\lambda 2 R \Delta p}{4 \mu L}$

$$
\begin{equation*}
\therefore u(r)=\frac{\Delta p}{4 \mu L}\left\{R^{2}-r^{2}+2 \lambda R\right\}=\frac{\Delta p R^{2}}{4 \mu L}\left(1+\frac{2 \lambda}{R}-\left(\frac{r}{R}\right)^{2}\right) \tag{2}
\end{equation*}
$$

Define $k_{n}=\lambda / D: \quad u(r)=\frac{\Delta p D^{2}}{16 \mu L}\left(1+4 k_{n}-\left(\frac{2 r}{3}\right)^{2}\right)$

$$
\frac{u_{\text {sip }}}{u_{\text {max }}}=\frac{u(R)}{u(0)}=\frac{4 k_{n}}{1+4 k_{n}} \Rightarrow B=4
$$

Qu

$$
\text { (a) } \begin{aligned}
F & =u-T S \\
\therefore d F & =d U-T d S-\delta d T \\
& =d U-(d u+p d V)-S d T \\
& =-p d V-S d T \\
\Rightarrow P & =-\left(\frac{\partial F}{\partial V}\right)_{T} \\
\text { Now } F & =-k T \ln Q=-k T \ln \left(\frac{Z^{N}}{N!}\right) \\
\therefore P & =N k T \frac{\partial}{\partial V} \ln Z=N k T \frac{\partial}{\partial V}\{\ln V+f(T))=\frac{N k T}{V}
\end{aligned}
$$

ic, $\quad p V=N k T$
(6)

$$
\begin{aligned}
u & =\underbrace{\sum_{j} N_{j} \varepsilon_{j}}_{\delta Q} \\
\therefore d u & =\underbrace{\sum_{j} \varepsilon_{j} d N_{j}}_{-\delta W}+\underbrace{\sum_{-\delta}}_{\sum_{j} N_{j} d \varepsilon_{j}}
\end{aligned}
$$

The fist tern is due te a redistribution of the numbers of nodeculs over the energy levels. It thus affects the number of micostates of the system and hence the entropy and may therefore be identified with heat trauefs for a reversible process. The second tam is due t a change in the every levels. It decs not affect the entropy and very then foe be identified as a reverifle work transfer.
(c) (i) The question gives a strong hint we should work in tams of T \&V Thus,

$$
\begin{aligned}
& S_{B}-S_{A}=C_{V} \ln \left(\frac{T_{0}}{T_{A}}\right)+R \ln \left(\frac{V_{I}}{V_{A}}\right)=0 \quad\left[\begin{array}{c}
\text { revesitle, } \\
\text { adiabatic }
\end{array}\right] \\
& \Rightarrow \quad T_{B} V_{B}^{R / C N}=T_{A} V_{A}^{R / C N}=\operatorname{cost} \frac{R}{R} T V^{2 / 3}=\text { cost }
\end{aligned}
$$

(ALso available directly from data book fo isentropic process)

Now $\frac{N_{j}}{N}=\frac{g_{j} \exp \left(-\varepsilon_{j} \mid R T\right)}{Z}$ and $\varepsilon_{j} \alpha V^{-2 / 3}$
$\therefore \varepsilon_{j} / R T \propto \quad 1 /\left(T V^{2 / 3}\right)=$ cons
Hence the exponential terms an unchanged. Z is also unchanged (because $Z=\sum_{j} g_{j} \exp \left(-\varepsilon_{j} \mid R T\right)$ or directly from expression for Z given)
$\therefore \frac{N_{j}}{N}$ is unchanged between states $A \& B$.
This is consistent with all $8 N_{j}$ being zero, as required for anstant S. [6]
(c)
(ii)

$$
\text { IT } \angle A \omega: \quad \begin{align*}
\omega & =-\Delta U \\
& =\operatorname{MeV}\left(T_{A}-T_{B}\right) \text { or } \frac{3 N k T_{A}}{2}\left(1-\frac{T_{B}}{T_{A}}\right) \\
& =\frac{3 N k T_{A}}{2}\left(1-\left(\frac{V_{B}}{V_{A}}\right)^{-2 / 3}\right) \tag{1}
\end{align*}
$$

Now $\varepsilon_{n}^{B}=\frac{h^{2}}{8_{m}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) V_{B}^{-2 / 3}$
FIRST TWO LEVELS, $\left(\varepsilon_{2}-\varepsilon_{1}\right)=\frac{h^{2} V_{B}^{-2 / 3}}{8 m}[(4+1+1)-(1+1+1)]=\frac{3 h^{2} V_{B}^{-2 / 3}}{8 m}$
SECOND TOO LEVELS, $\left(\varepsilon_{3}-\varepsilon_{2}\right)=\frac{h^{2} V_{B}^{-2 / 3}}{8 m}[(4+4+1)-(4+1+1)]=\frac{3 h^{2} V_{B}^{-2 / 3}}{8 m}$
From (1), both spacings are $\frac{3 h^{2}}{8 m} V_{A}^{-2 / 3}\left(1-\frac{W}{M C T_{A}}\right)$

Q4. (a)
(1) M only (M is isdated; C is contact win a resevair)
(ii) B (C in contact with repvair at fixed T; M isdated and T is α avenge trushtoind KE per notecule)
(iii) B (M\& C dadel).
(iv) C only (M is sistated)

NoIE: either C or B would be accepteble here
(6) (i) $G=\sum p_{i}=1$
(ii) $S^{\prime}=-k \sum P_{i} \ln P_{i}$

Mincuise S^{\prime} at constant $G \Rightarrow \nabla S^{\prime}+\lambda \nabla G=0$

$$
\begin{gathered}
\Rightarrow \frac{\partial S^{\prime}}{\partial P_{i}} \rightarrow \lambda \frac{\partial t}{\partial P_{i}}=0 \\
\therefore \quad-k \frac{P_{i}}{P_{i}}-k \ln P_{i}+\lambda \times r=0 \\
\Rightarrow \quad \ln P_{i}=\frac{\lambda}{k}-1 \Rightarrow \quad P_{i}=e^{\left(x_{k}-1\right)}=\text { const }=c \\
\quad \sum P_{i}=1 \Rightarrow c \Omega=1 \\
\therefore \quad P_{i}=\frac{1}{\Omega} .
\end{gathered}
$$

Isbated systom: entropy is maxinused at equilibrion.

$$
\begin{equation*}
\therefore \quad S^{\prime}=S_{\text {max }}^{\prime}=-k \sum \frac{1}{\Omega} \ln \left(\frac{1}{\Omega}\right)=k \ln \Omega \tag{5}
\end{equation*}
$$

(c) (i) $F^{\prime}=u-T S^{\prime}=\sum P_{i} E_{i}+k T \sum P_{i} \ln P_{i}$

$$
\therefore \quad F^{\prime}=\sum P_{i}\left(E_{i}+k T \ln P_{i}\right)
$$

Minumse subpat $\hbar G=\sum P_{i}=1$

$$
\begin{aligned}
& \therefore \nabla F^{\prime}+\lambda \nabla G=0 \\
& \left.\Rightarrow E_{i}+k T+k T \ln P_{i}+\lambda_{x}\right)=0 \\
& \left.\Rightarrow \ln P_{i}=-\frac{\lambda}{k_{T}}-1-E_{i} \right\rvert\, k T \\
& \Rightarrow P_{i}=\ln (T, V) e^{-E_{i} / \ln } \\
& \text { But } \sum P_{i}=1 \Rightarrow \ln (T, v)=\frac{1}{\sum e^{-E_{i} l \vec{l}}}=\frac{1}{Q} . \\
& \therefore \quad P_{i}=\frac{e^{-E_{i} \ln \bar{T}}}{Q}
\end{aligned}
$$

(ii)

$$
\begin{align*}
F^{\prime} & =\sum P_{i}\left(E_{i}+k T \ln P_{i}\right)=\sum P_{i}\left(E_{i}-k T T_{i}-k T \ln Q\right) \\
& =-k T \ln Q \sum P_{i}=-\underline{k T \ln Q} \\
U & =\sum E_{i} P_{i}=\frac{1}{Q} \sum E_{i} \exp \left(-E_{i} \mid k T\right) \\
Q & =\sum \exp \left(-E_{i} \mid k T\right) \Rightarrow\left(\frac{\partial Q}{\partial T}\right)_{v, N}=\sum \frac{E_{i}}{k i T^{2}} \exp \left(-E_{i} / k T\right) \\
\therefore Q & =\frac{k T^{2}}{Q}\left(\frac{\partial Q}{\partial T}\right)_{i, N}=k T^{2} \frac{\partial}{\partial T}(\ln Q)_{(i, N)} \tag{6}
\end{align*}
$$

