
Version AJW/3

EGT3
ENGINEERING TRIPOS PART IIB

Friday 29 April 2022 9.30 to 11.10

Module 4A9

MOLECULAR THERMODYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Information relevant to this question can be found on the next page. Throughout the
question nitrogen may be treated as a perfect gas.

Nitrogen gas flows in a nozzle whose axis is aligned with the x1 direction. The width
of the nozzle may be assumed large compared with any boundary layers. At a particular
point P on the centreline of the nozzle the temperature is 350 K, the pressure is 1 bar and
the flow velocity is 100 m s−1 in the positive x1 direction.

(a) Calculate the average energy per molecule at point P and determine what fraction of
this energy is due to (i) random translational kinetic energy of molecules, (ii) bulk kinetic
energy of the flow. [20%]

(b) The molecular velocity distribution is denoted by f and the cartesian components of
the molecular peculiar velocity are denoted byC1, C2 andC3. The corresponding absolute
velocity components are c1, c2 and c3 respectively.

Consider the integral

I =

∞∫
−∞

∞∫
−∞

∞∫
−∞

Q f dC1dC2dC3

for the cases where

(i) Q = m, the mass of a molecule

(ii) Q = c1/n, where n is the number density of molecules

(iii) Q = 1
2C2

3/n

(iv) Q = mC1C2

(v) Q = 1
2mC1C2, where C2 = C2

1 + C2
2 + C2

3

For each case give a physical interpretation of the quantity I and determine its value at the
point P. [40%]

(c) An imaginary plane within the gas at P is orientated such that the cartesian co-
ordinate x3 is normal to the plane. Write down an integral for the flux of the quantity
1
2mC2

3 through unit area of the plane transported by molecules with C3 > 0. Evaluate this
integral and hence obtain the mean value of 1

2C2
3 for molecules crossing the plane with

C3 > 0. How does this compare with the mean value of 1
2C2

3 at point P? Comment on
any differences. [40%]
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Information for Question 1

The ‘one-sided’ molecular mass flux per unit area through a plane for a gas of density ρ
and with specific gas constant R:

F+M =
ρC̄
4
=
ρ

4

(
8RT
π

)1/2

The Maxwellian velocity distribution function:

f (C1, C2, C3) =
n

(2πRT)3/2
exp

{
−

C2
1 + C2

2 + C2
3

2RT

}
where n is the number density of molecules.

Some definite integrals:

I(n) =

∞∫
0

xn exp
(
−x2

)
dx

n I(n)

0
√
π

2

1
1
2

2
√
π

4

3
1
2
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2 (a) Define the Knudsen number, Kn, and explain its physical significance.
Describe briefly the different flow regimes that occur at different Knudsen numbers,
giving approximate ranges of Kn for each case. [10%]

(b) Argon gas at 300 K flows through a capillary tube of diameter D and length
L � D. The flow is driven by a pressure difference ∆p between the two ends of the
tube. Information is sought on how, at low gas pressure, the velocity profile differs from
that predicted by continuum theory.

(i) If D = 0.2 mm estimate the range of pressures for which the flow is in the slip
regime. Assume that the effective diameter of argon molecules is 0.37 nm. [20%]

(ii) Suppose from now on that the pressure lies within the range calculated in (i)
and that ∆p is small compared with this range. With the aid of a suitable diagram,
illustrate how the slip velocity at the tube wall, uslip, is defined. Assuming that
molecules are reflected diffusely from the wall, show that

uslip ' −λ

(
du
dr

)
r=D/2

where λ is the molecular mean free path and r is the radial coordinate. It may be
assumed without proof that the one-sided molecular mass flux per unit area is ρC̄/4
and that the dynamic viscosity µ is equal to ρC̄λ/2, where ρ is the density and C̄ is
the mean thermal speed of molecules. [30%]

(iii) Starting from the force-momentum principle applied to a suitable control
volume, derive an expression for the velocity profile u(r) in terms of ∆p, L, D, µ,
Kn and r . Hence show that uslip

umax
'

B Kn
1 + B Kn

where umax is the maximum velocity at the centreline of the tube and B is a constant.
Find the value of B. [40%]
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3 A closed system comprises N molecules of a monatomic gas of molecular mass m.
When the volume of the system is V the energies of the molecular translational quantum
states, εi, and the corresponding single-particle partition function, Z , are given by

εi =
h2

8mV2/3 (n
2
1 + n2

2 + n2
3) and Z = V

(
2πmkT

h2

)3/2

where k is Boltzmann’s constant, h is Planck’s constant, n1, n2 and n3 are the three
translational quantum numbers and T is the temperature.

(a) Starting with the definition of Helmholtz free energy, F = U − TS (where U is
the internal energy and S is the entropy), derive the ideal gas relationship. You may use
without proof the relation F = −kT ln Q, where Q is the system partition function. [25%]

(b) Write down an equation forU in terms of ε j and Nj , where ε j is the energy of the j-th
energy level and Nj is the average number of molecules within that energy level. Hence
determine an expression for an infinitesimal change in U in terms of ε j and Nj . Give, with
justification, physical interpretations to the different terms in this expression. [15%]

(c) The system expands reversibly and adiabatically from state A (temperature TA and
volume VA) to state B (temperature TB, volume VB) whilst doing work W .

(i) Starting from thermodynamic relations for the entropy of a perfect gas, show
that the values of Nj do not change between these states. Explain how this result
relates to your answer to part (b). You may use without proof the relation

Nj

N
'

g j exp(−ε j/kT)

Z

where g j is the degeneracy of the j-th energy level. [30%]

(ii) Derive expressions for the spacing between the first and second energy levels,
ε2− ε1, and between the second and third energy levels, ε3− ε2, in terms of the work
transfer W and other appropriate quantities. Sketch on the same axes how these
spacings vary with W . [30%]
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4 (a) State whether each of the following applies to the microcanonical ensemble
(M), the canonical ensemble (C), neither (N) or both (B):

(i) fixed energy;

(ii) fixed temperature;

(iii) fixed number of particles;

(iv) allows for heat transfer.

In each case provide a brief justification for your answer. [20%]

(b) The statistical analogue of entropy of a system is given by

S′ = −k
Ω∑

i=1
Pi ln Pi

where k is Boltzmann’s constant, Pi is the probability that the system is in its i-thmicrostate
and Ω is the total number of possible microstates.

(i) What constraint applies to the Pi? [5%]

(ii) Using the method of Lagrange multipliers, show that S′ is maximised when
all microstates are equally probable. Hence determine a simplified expression for
the statistical analogue of entropy valid for isolated systems. [25%]

(c) A closed system of fixed volume is in thermal contact with a large thermal reservoir
at temperature T . The energy and probability of the system microstates are denoted by Ei
and Pi respectively, and the (thermodynamic) internal energy by U.

(i) By minimising F′ = U − TS′ (the statistical analogue of Helmholtz free
energy), determine how Pi depends on Ei when the system is at equilibrium. [20%]

(ii) Show that F′ = −kT ln Q, and find an expression for U in terms of k, T and
Q, where Q is the system partition function. [30%]

END OF PAPER
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ANSWERS 
 

Q1. (a)  1.23x10–20 J  (i) 0.589 (ii) 0.0189  

 (b) (i) 0.962 kgm–3 (ii) 100 ms–1 (iii) 52.0 kJkg–1 (iv) 0 Nm–2  (v) 0 Wm–2 

 (c) Mean value = 104 kJkg–1 

 

Q2. (b)  (i) 340 Pa to 3.4 kPa (iii) B = 4 

 
 

 
 


