EGT3 ENGINEERING TRIPOS PART IIB

Wednesday 30 April 2014 2 to 3.30

Module 4B14

SOLAR ELECTRONIC POWER: GENERATION AND DISTRIBUTION

Answer not more than **three** questions.

All questions carry the same number of marks.

The *approximate* percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>not</u> your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed Engineering Data Book Attachment: Sheet of Formulae and Constants (1 page).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version GAJA/4

1	A Si p-n junction solar cell has	the following parameters
---	----------------------------------	--------------------------

Base wafer doping (p -type) (N_A)	$10^{23} m^{-3}$
Base wafer thickness	250 μm
n-region doping (N_D)	$10^{25} m^{-3}$
Hole minority carrier diffusion length (L_h)	100 nm
Electron minority carrier diffusion length (L_e)	100 µm
Hole minority carrier lifetime (τ_h)	1 ns
Electron minority carrier lifetime (τ_e)	1 μs

The junction area is 10^{-2} m^2 and the intrinsic concentration (n_i) is $5 \times 10^{16} m^{-3}$ at 300 K. The conduction band edge and valence band edge density of states can assumed to be equal (*i.e.* $N_c = N_v$).

Calculate the following under dark conditions:

- (a) The built in potential of the junction (V_{bi}) . [15%]
- (b) The reverse saturation current of the junction (I_S) . [15%]
- (c) The applied voltage required to get a forward current (I_F) of 5 A. [20%]

Under the forward bias conditions in (c) the p-n junction is exposed to sunlight conditions such that the average optical generation rate (g_{opt}) within the semi-conductor region is $10^{25} m^{-3} s^{-1}$.

(e) Calculate the open circuit voltage (V_{OC}) when the p-n junction works as a solar cell under the same optical conditions. [15%]

(f) Draw an equivalent circuit for the diode when it operates as a solar cell under the sunlight conditions specified. [15%]

2 (a) Assuming that the band-gap of amorphous Si (a-Si:H) is in the range 1.4-1.8 eV, would the conversion efficiency of an a-Si:H solar cell be higher for 400 nm light or 600 nm light? Give reasons for your answer. [20%] Amorphous silicon germanium (a - SiGe:H) has a narrower band-gap (0.6-0.8 (b) eV) than a - Si:H. Sketch a schematic diagram of a solar cell comprised of both materials which would be expected to give a higher efficiency. Explain clearly the reasons for the higher efficiency. [25%] (c) In designing a cell as in (b) above, what are the key considerations which need to be taken into account to achieve a high efficiency? [20%] A thin transparent insulating layer is applied to the front of bulk Si solar cells. (d) (i) What is the purpose of this layer? [10%] If the layer has a refractive index of 2.2, calculate its optimum thickness. (ii) [10%] (iii) Why may the layer thickness be different for a solar cell made from a - Si:H?

[15%]

3	(a)	What does the Fill Factor (FF) of a solar cell signify?	[15%]
(b)	What	are the factors which reduce the FF of a solar cell from the ideal case?	[15%]
(c) signit	Draw ficanc	an equivalent circuit for a practical solar cell explaining clearly the e of each term and how it influences the FF.	[20%]
(d)	If the	FF for an ideal solar cell is 0.83 at 300 K, estimate its open circuit voltage.	[20%]
(e) (AM) curre	The 6) 1.5 s nt?	expected efficiency for the ideal solar cell of area 10^{-2} m ² under <i>air mass</i> solar insolation (1kWm ⁻²) is 18%. What is the corresponding short circuit	[15%]
(f)	When	n the cell is manufactured to achieve the specifications as in (e) above it is	

(f) When the cell is manufactured to achieve the specifications as in (e) above it is found to have a contact resistance of 0.06Ω . What is the efficiency of the manufactured cell? [15%]

4 solar	(a) photo	Explain why <i>Maximum Power Point Tracking</i> (MPPT) is implemented in <i>pvoltaic</i> (PV) installations and outline a method for doing so.	[20%]
(b) conne	Show	v in block-diagram form the main power conversion stages required for the power output from a solar PV installation to the power grid.	[20%]
(c)	Discu	uss the pricing of power generated from a PV installation based on grid	[30%]
dema	and and	ad electricity spot pricing.	
(d)	By c	considering the total energy cycle of manufacture, operation and recycling	[30%]
comr	nent o	on whether solar PV is a sustainable technology for electricity generation.	

END OF PAPER

Version GAJA/4

THIS PAGE IS BLANK