Worked solutions for 4B23 Optical Fibre Communication 2022/23 paper version 3

Question 1

a) From the 4B23 formula sheet

$$
n_{g}=n-\lambda \frac{d n}{d \lambda}
$$

Therefore

$$
n_{g}=A+\left(\frac{B}{\lambda}\right)^{2}-\left(\frac{\lambda}{b}\right)^{2}-\lambda\left[-\frac{2 B^{2}}{\lambda^{3}}-\frac{2 \lambda}{b^{2}}\right]=A+3\left(\frac{B}{\lambda}\right)^{2}+\left(\frac{\lambda}{b}\right)^{2}
$$

Also from the 4B23 formula sheet

$$
D=-\frac{\lambda}{c} \frac{d^{2} n}{d \lambda^{2}}=-\frac{\lambda}{c} \frac{d}{d \lambda}\left[-\frac{2 B^{2}}{\lambda^{3}}-\frac{2 \lambda}{b^{2}}\right]=-\frac{\lambda}{c}\left[\frac{6 B^{2}}{\lambda^{4}}-\frac{2}{b^{2}}\right]=-\frac{6 B^{2}}{c} \frac{1}{\lambda^{3}}+\frac{2 \lambda}{c b^{2}}
$$

We know at $\lambda=1312 \mathrm{~nm} D=0$ therefore

$$
\lambda_{0}^{4}=3 B^{2} b^{2}
$$

Hence we can re-write as

$$
D=\frac{2}{c b^{2}}\left(\lambda-\frac{\lambda_{0}^{4}}{\lambda^{3}}\right)
$$

Therefore rearranging gives

$$
b=\sqrt{\frac{2 \lambda}{c D}\left(1-\frac{\lambda_{0}^{4}}{\lambda^{4}}\right)}
$$

We note that

$$
c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \times 10^{-3} \frac{\mathrm{~km}}{\mathrm{~m}} \times 10^{-12} \frac{\mathrm{~s}}{\mathrm{ps}}=3 \times 10^{-7} \frac{\mathrm{~km}}{\mathrm{ps}}
$$

Using c in $\mathrm{km} / \mathrm{ps}$ allows the use of D in $\mathrm{ps} / \mathrm{nm} / \mathrm{km}$ with wavelengths λ and λ_{0} in nm such that

$$
b=\sqrt{\frac{2 \times 1550}{3 \times 10^{-7} \times 17}\left(1-\frac{1312^{4}}{1550^{4}}\right)}=17199 \mathrm{~nm}
$$

Therefore from $\lambda_{0}^{4}=3 B^{2} b^{2}$

$$
B=\frac{1312^{2}}{17199 \times \sqrt{3}}=57.78 \mathrm{~nm}
$$

Therefore from $n_{g}=A+3\left(\frac{B}{\lambda}\right)^{2}+\left(\frac{\lambda}{b}\right)^{2}$ we have

$$
A=1.4620-3\left(\frac{57.78}{1550}\right)^{2}-\left(\frac{1550}{17199}\right)^{2}=1.4497
$$

b) Minimum latency for the data will happen when group refractive index is a minimum. The overall minimum occurs at 1312 nm so the first wavelength channel at 1530 nm will experience the minimum latency

The group refractive index is $1.4497+3 \times\left(\frac{57.78}{1530}\right)^{2}+\left(\frac{1530}{17199}\right)^{2}=1.4619$
Hence the latency in s will be $1.4619 \times \frac{6500 \times 10^{3}}{3 \times 10^{8}}=0.03167=31.7 \mathrm{~ms}$
Alternative method
Latency at 1550 nm is $1.4620 \times \frac{6500 \times 10^{3}}{3 \times 10^{8}}=0.03168=31.7 \mathrm{~ms}$
Dispersion is 17 nm at 1550 nm so difference at 1530 nm is $20 \times 6500 \times 17=2 \mu \mathrm{~s}$
So at 1530 nm latency is 31.7 ms
c) Rectangular Nyquist spectrum means that a 100.5 GBd signal will occupy 100.5 GHz of optical spectrum. Maximum dispersion will occur at 1610 nm

$$
D=\frac{2}{c b^{2}}\left(\lambda-\frac{\lambda_{0}^{4}}{\lambda^{3}}\right)
$$

With $b=17199 \mathrm{~nm}$ and $\lambda_{0}=1312 \mathrm{~nm}$ hence

$$
D=\frac{2 \times 1610}{3 \times 10^{-7} \times(17199)^{2}}\left(1-\left[\frac{1310}{1610}\right]^{4}\right)=20.4 \mathrm{ps} / \mathrm{nm} / \mathrm{km}
$$

At $\lambda=1610 \mathrm{~nm}$ the frequency is $f=3 \times 10^{8} / 1.61 \times 10^{-6}=1.86 \times 10^{14} \mathrm{~Hz}$

$$
\Delta \lambda=\lambda \times \frac{\Delta f}{f}=1610 \times \frac{100.5 \times 10^{9}}{1.86 \times 10^{14}}=0.87 \mathrm{~nm}
$$

Hence the delay from 6500 km is

$$
6500 \times 20.4 \times 0.87=115.3 \mathrm{~ns}
$$

Sampling rate is $100.5 \times \frac{16}{15}=107.2 \mathrm{GSa} / \mathrm{s}$
Therefore number of samples corresponding to 115.3 ns is

$$
N_{C D}=115.3 \times 10^{-9} \times 107.2 \times 10^{9}=12360.1
$$

d) Using the overlap and save algorithm with an N point FFT the number of complex multiplies per sample $N_{c m}$ is

$$
N_{c m}=\frac{N \log _{2}(N)+N}{N-N_{C D}+1}
$$

Given $N_{C D}=12360$ we expect the minimum value of N to be $N=2^{15}=32768$ which gives

$$
N_{c m}=\frac{32768 \times 15+32768}{32768-12360+1}=25.7
$$

Given there are no technological limitations regarding the FFT size let us consider $N=2{ }^{16}$ which gives

$$
N_{c m}=\frac{2^{16} \times 17}{2^{16}-12360+1}=20.95
$$

Increasing to $N=2{ }^{17}$ gives

$$
N_{c m}=\frac{2^{17} \times 18}{2^{17}-12360+1}=19.87
$$

Increasing to $N=2^{18}$ gives

$$
N_{c m}=\frac{2^{18} \times 19}{2^{18}-12360+1}=19.94
$$

Hence the optimum value of $N=2^{17}$. The power consumption per polarisation is
$P=19.87 \times 0.5 \times 10^{-12} \times 107.2 \times 10^{9}=1.07 \mathrm{~W}$ and hence for two polarisations the total power consumption is 2.1 W .

Question 2

a)

$$
\begin{gathered}
\frac{d n(z)}{d z}=\eta\left(N_{2}-N_{1}\right) n(z)+\eta N_{2} \\
\frac{d}{d z}\left\{n(z) e^{-\eta\left(N_{2}-N_{1}\right) z}\right\}=\eta N_{2} e^{-\eta\left(N_{2}-N_{1}\right) z} \\
n(z) e^{-\eta\left(N_{2}-N_{1}\right) z}=-\frac{N_{2}}{N_{2}-N_{1}} e^{-\eta\left(N_{2}-N_{1}\right) z}+C
\end{gathered}
$$

For $z=0$ we have $n(0)=n_{\text {in }}$ and hence

$$
n_{i n}=-\frac{N_{2}}{N_{2}-N_{1}}+C
$$

Therefore

$$
n(z) e^{-\eta\left(N_{2}-N_{1}\right) z}=-\frac{N_{2}}{N_{2}-N_{1}} e^{-\eta\left(N_{2}-N_{1}\right) z}+\left(n_{i n}+\frac{N_{2}}{N_{2}-N_{1}}\right)
$$

Therefore, for a length of erbium fibre of length L defining $G=e^{\eta\left(N_{2}-N_{1}\right) L}$ to be the gain and $n_{s p}=N_{2} /\left(N_{2}-N_{1}\right)$ the number of photons exiting will be

$$
\frac{n(L)}{G}=-\frac{n_{s p}}{G}+\left(n_{i n}+n_{s p}\right)
$$

therefore

$$
n(L)=n_{i n} G+n_{s p}(G-1)
$$

b)
i) $\quad n_{s p}=\frac{N_{2}}{N_{2}-N_{1}}$ with $N_{2}=2 N_{1}$ gives $n_{s p}=\frac{N_{2}}{N_{2}-N_{1}}=\frac{2 N_{1}}{2 N_{1}-N_{1}}=2$

The power spectral density of the ASE is $N_{A S E}=2 n_{s p} h v(G-1)=4 h v(G-1)$
The noise in 64 GHz is $4 \times 1.3 \times 10^{-19} \times 64 \times 10^{9}(G-1)=33.28 \times 10^{-9}(G-1)$
With span of $80 \mathrm{~km} G=10^{80 \times \frac{0.2}{10}}=39.8$
PSD of ASE is $4 \times 1.3 \times 10^{-19} \times 38.8=2.02 \times 10^{-5} \mathrm{pJ}$
noise from ASE is $1.291 \times 10^{-6}=1.29 \mu \mathrm{~W}$
So SNR is 1000/1.29=774.6 which is 28.8 dB
After 480 km corresponding to 6 spans the SNR is 129.1 which is 21.1 dB
ii) $\quad \alpha_{d B}=0.2 \mathrm{~dB} / \mathrm{km}\left(\right.$ so $\left.\alpha=0.046 \mathrm{~km}^{-1}\right), \mathrm{D}=17 \mathrm{ps} / \mathrm{nm} / \mathrm{km}\left(\right.$ so $\left|\beta_{2}\right|=$ $17 / 0.784=21.6 \mathrm{ps}^{2} / \mathrm{km}$), $B_{o}=5 \mathrm{THz}, \gamma=1.3 \mathrm{~W}^{-1} \mathrm{~km}^{-1}, L=100 \mathrm{~km}$ (so $\left.L_{e f f}=23.8 \mathrm{~km}\right)$.

$$
C_{N L I}=\frac{8 \gamma^{2} L_{\text {eff }}^{2} \alpha}{27 \pi\left|\beta_{2}\right|} \ln \left(\frac{\pi^{2}\left|\beta_{2}\right| B_{o}^{2}}{\alpha}\right)=\left(1-e^{-\alpha L}\right)^{2} \frac{8 \gamma^{2}}{27 \pi\left|\beta_{2}\right| \alpha} \ln \left(\frac{\pi^{2}\left|\beta_{2}\right| B_{o}^{2}}{\alpha}\right)
$$

$$
\begin{aligned}
C_{N L I}=\left(1-e^{-\alpha L}\right)^{2} & \frac{8 \times 1.3^{2}}{27 \pi|21.6| 0.046} \ln \left(\frac{\pi^{2}|21.6| 5^{2}}{0.046}\right) \\
& =\left(1-e^{-\alpha L}\right)^{2} \times 0.16 \times 11.66(p J)^{-2}=\left(1-e^{-\alpha L}\right)^{2} \times 1.87(p J)^{-2}
\end{aligned}
$$

With 80 km PSD is $1.78(p J)^{-2}$
So optimum signal PSD is $\sqrt[3]{\frac{2.02 \times 10^{-5}}{2 \times 1.78}}=0.0178 \mathrm{pJ}$
So for a 64 GBd signal $64 \times 10^{-3} \times 0.0178=1.1 \mathrm{~mW}$

Therefore

$$
\begin{array}{r}
\text { PSD }_{\text {opt }}=\sqrt[3]{\frac{5.2 \times 10^{-7} \times\left[\exp \left(\alpha L_{s}\right)-1\right]}{2 \times 1.87\left[\left[1-\exp \left(-\alpha L_{s}\right)\right]^{2}\right.}}=\sqrt[3]{\frac{5.2 \times 10^{-7} \times\left[\exp \left(\alpha L_{s}\right)-1\right]}{2 \times 1.87\left[1-\exp \left(-\alpha L_{s}\right)\right]^{2}}} \\
\quad=5.18 \times 10^{-3^{3}} \sqrt{\frac{\left[\exp \left(\alpha L_{s}\right)-1\right]}{\left[1-\exp \left(-\alpha L_{s}\right)\right]^{2}}}=5.18 \times 10^{-3^{3}} \sqrt{\frac{\exp \left(2 \alpha L_{s}\right)}{\exp \left(\alpha L_{s}\right)-1}}
\end{array}
$$

And $S N R_{o p t}=\frac{2 P S D_{o p t}}{3 \times 4 \times 1.3 \times 10^{-7}\left(\exp \left(\alpha L_{S}\right)-1\right)}=\frac{\frac{2 \times 5.18 \times 10^{-3}}{3 \times 4 \times 1.3 \times 10^{-7}} \exp \left(\frac{2}{3} \alpha L_{S}\right)}{\left[\exp \left(\alpha L_{S}\right)-1\right]^{4 / 3}}=$
$\frac{6641}{\left[\exp \left(\alpha L_{S} / 2\right)-\exp \left(-\alpha L_{S} / 2\right)\right]^{\frac{4}{3}}}=\frac{2635}{\left[\sinh \left(\frac{\alpha L_{S}}{2}\right)\right]^{\frac{4}{3}}}$
For $L=80 \mathrm{~km}$

$$
S N R_{o p t}=590.85
$$

Hence after 6 spans $S N R_{\text {opt }}=98$ giving 19.9 dB
iii)

For initial design with span of $60 \mathrm{~km} G=10^{60 \times \frac{0.2}{10}}=15.85$
Therefore noise from ASE is 0.494×10^{-6}
So SNR is 2024 which is 33.1 dB
After 480 km corresponding to 8 spans the SNR is 253 which is 24 dB so SNR increases by 3 dB

For the more detailed design

$$
S N R_{\text {opt }}=\frac{2635}{\left[\sinh \left(\frac{\alpha L_{s}}{2}\right)\right]^{\frac{4}{3}}}
$$

For $L=60 \mathrm{~km}$

$$
S N R_{o p t}=1150.6
$$

Hence after 8 spans $S N R_{\text {opt }}=143.8$ giving 21.6 dB
So increase of 1.7 dB (with reduction do to NL effects)
c) The power per EDFA is modelled as $k G=k \exp \left(\alpha L_{s}\right)$

$$
\begin{gathered}
P_{T}=\frac{k L}{L_{s}} \exp \left(\alpha L_{s}\right) \\
\frac{d P_{T}}{d L_{s}}=-\alpha \frac{k L}{L_{s}} \exp \left(\alpha L_{s}\right)-\frac{k L}{L_{s}^{2}} \exp \left(\alpha L_{s}\right)=0
\end{gathered}
$$

Therefore $\frac{\alpha}{L_{s}}=\frac{1}{L_{S}^{2}}$ therefore $L_{S}=\frac{1}{\alpha}$

Question 3

a) $V=\frac{2 \pi a}{\lambda} \sqrt{n_{c o}^{2}-n_{c l}^{2}}$

At cutoff wavelength $V=2.405$ so

$$
\lambda_{c}=\frac{2 \pi a}{2.405} \sqrt{n_{c o}^{2}-n_{c l}^{2}}=\frac{2 \pi \times 5 \times 10^{-6}}{2.405} \sqrt{1.45^{2}-1.446^{2}}=1406 \mathrm{~nm}
$$

b)
i) With $E(r)=E_{0} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)$

It follows that

$$
\frac{d E}{d r}=-\frac{2 r}{r_{0}^{2}} E_{0} \exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)
$$

And hence substituting into the expression for β gives

$$
\beta^{2}=\frac{k_{0}^{2} \int_{0}^{\infty} r n^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r-\int_{0}^{\infty} 4 \frac{r^{3}}{r_{0}^{4}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r}{\int_{0}^{\infty} r \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r}
$$

We note that

$$
\begin{gathered}
\int_{0}^{\infty} r \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=-\frac{r_{0}^{2}}{4} \int_{0}^{\infty}-4 \frac{r}{r_{0}^{2}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=-\frac{r_{0}^{2}}{4}\left[\exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)\right]_{0}^{\infty} \\
=\frac{r_{0}^{2}}{4} \\
\begin{aligned}
& \int_{0}^{\infty} r n^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=\int_{0}^{a} r n_{c o}^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r+\int_{a}^{\infty} r n_{c l}^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r \\
&=n_{c o}^{2}\left[-\frac{r_{0}^{2}}{4} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)\right]_{0}^{a}+n_{c l}^{2}\left[-\frac{r_{0}^{2}}{4} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)\right]_{a}^{\infty} \\
&=\frac{n_{c o}^{2} r_{0}^{2}}{4}\left[1-\exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)\right]+\frac{n_{c l}^{2} r_{0}^{2}}{4} \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)
\end{aligned}
\end{gathered}
$$

- And $\int_{0}^{\infty} 4 \frac{r^{3}}{r_{0}^{4}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=-\int_{0}^{\infty} \frac{r^{2}}{r_{0}^{2}}\left(-4 \frac{r}{r_{0}^{2}}\right) \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=$

$$
-\left[\frac{r^{2}}{r_{0}^{2}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{2 r}{r_{0}^{2}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=\frac{1}{2}\left[-\exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)\right]_{0}^{\infty}=\frac{1}{2}
$$

Therefore for a step index fibre the integral can be evaluated to give

$$
\beta_{0}^{2}=\frac{\frac{1}{4}\left(1-\exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)\right) r_{0}^{2} k_{0}^{2} n_{c o}^{2}+\frac{1}{4} \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right) r_{0}^{2} k_{0}^{2} n_{c l}^{2}-\frac{1}{2}}{\frac{r_{0}^{2}}{4}}
$$

which on simplifying becomes

$$
\beta^{2}=\left(1-\exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)\right) n_{c o}^{2} k_{0}^{2}+\exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right) n_{c l}^{2} k_{0}^{2}-\frac{2}{r_{0}^{2}}
$$

ii) To determine the optimal value of r_{0} we differentiate β_{0}^{2} with respect to r_{0} to give

$$
\frac{d \beta^{2}}{d r_{0}}=-4 \frac{a^{2}}{r_{0}^{3}} \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right) n_{c o}^{2} k_{0}^{2}+4 \frac{a^{2}}{r_{0}^{3}} \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right) n_{c l}^{2} k_{0}^{2}+\frac{4}{r_{0}^{3}}=0
$$

hence

$$
1=k_{0}^{2} a^{2}\left(n_{c o}^{2}-n_{c l}^{2}\right) \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)=V^{2} \exp \left(-2 \frac{a^{2}}{r_{0}^{2}}\right)
$$

Therefore

$$
\begin{gathered}
V=\exp \left(\frac{a^{2}}{r_{0}^{2}}\right) \\
r_{0}=\frac{a}{\sqrt{\ln V}}
\end{gathered}
$$

c) mean power density is given by $\langle S\rangle$, the time averaged Poynting Vector

$$
\langle S\rangle=\frac{1}{2} \frac{|E|^{2}}{\eta}=\frac{1}{2} \frac{n}{\eta_{0}}|E|^{2}=\frac{1}{2} \frac{n}{\eta_{0}} E_{0}^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right)
$$

$\eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}=377 \Omega$ is the impedance of free space and n is the refractive index.

Therefore $P=\int_{0}^{\infty} 2 \pi r \frac{1}{2} \frac{n}{\eta_{0}} E_{0}^{2} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=\pi \frac{n}{\eta_{0}} E_{0}^{2}\left(-\frac{r_{0}^{2}}{4}\right) \int_{0}^{\infty}-\frac{4 r}{r_{0}^{2}} \exp \left(-2 \frac{r^{2}}{r_{0}^{2}}\right) d r=$ $\pi \frac{n}{\eta_{0}} E_{0}^{2} \frac{r_{0}^{2}}{4}$

$$
V=\frac{2 \pi \times 5}{1.48} \times \sqrt{1.45^{2}-1.446^{2}}=2.28
$$

Therefore $r_{0}=\frac{5}{\sqrt{\ln 2.28}}=5.5 \mu \mathrm{~m}$
Therefore $\frac{P=\pi \times \frac{1.45}{3 T 1} \times 36 \times 10^{12} \times \frac{\left(5.5 \times 10^{-6}\right)^{2}}{4}=3.3 \mathrm{~W} . \mathrm{W}}{}$

$$
P=\pi \frac{n}{\eta_{0}} E_{0}^{2} \frac{r_{0}^{2}}{4}
$$

And also

$$
r_{0}=\frac{a}{\sqrt{\ln V}}
$$

So

$$
P=\pi \frac{n}{\eta_{0}} E_{0}^{2} \frac{a^{2}}{\ln V}
$$

Scattering at $r=a$ is

$$
S=E_{0} \exp \left(-\frac{a^{2}}{r_{0}^{2}}\right)
$$

To determine maximum consider S^{2} such that

$$
S^{2}=E_{0}^{2} \exp \left(-\frac{2 a^{2}}{r_{0}^{2}}\right)
$$

And

$$
\frac{S^{2}}{P}=\frac{\exp (-2 \ln V)}{\pi n a^{2}} \eta_{0} \ln V=\frac{\eta_{0}}{\pi n a^{2}} \frac{\ln V}{V^{2}}
$$

Hence

$$
\frac{d}{d V}\left(\frac{S^{2}}{P}\right)=\frac{\eta_{0}}{\pi n a^{2}}\left[\frac{1}{V} \frac{1}{V^{2}}-\frac{2 \ln V}{V^{3}}\right]
$$

Therefore for maximum $1-2 \ln V=0$
Hence $V=\exp \left(\frac{1}{2}\right)=\sqrt{e}=1.68$

