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1  
 
a) The term 𝐴/𝜆! is due to Rayleigh scattering 

b) at 𝜆 = 1260 nm, 𝑓 = "×$%!

$&'%×$%"#
= 2.38 × 10$! Hz 

 

at 𝜆 = 1675 nm, 𝑓 = "×$%!

$'()×$%"#
= 1.79 × 10$! Hz 

 
therefore total bandwidth is 59 THz 
 
Assuming the capacity is given by Shannon and polarisation multiplexing is employed then 
 
𝐶 = 2𝐵 log&(1 + 𝑆𝑁𝑅) = 2 × 59 × 10$& × log&(1 + 1000) = 1.17 × 10$) = 1.2 Pbit/s 
 
c) Loss at 1260 nm is purely due to Rayleigh scattering. If 𝜆 is measured in µm then 
 

𝐴 = 0.3 × (1.26)! = 0.756	µm! 
At 𝜆 = 1.675 µm 𝛼*+ = 0.3 dB/km so 
 

0.3 = exp C𝐵 D
1
𝜆,-

−
1

1.675FG +
0.756
(1.675)! 

Therefore 
 

exp C𝐵 D
1
𝜆,-

−
1

1.675FG = 0.3 −
0.756
(1.675)! = 0.204 

 
And likewise at 𝜆 = 1.770 µm 𝛼*+ = 1 dB/km so 
 

1 = exp C𝐵 D
1
𝜆,-

−
1

1.770FG +
0.756
(1.770)! 

Therefore  

exp C𝐵 D
1
𝜆,-

−
1

1.770FG = 1 −
0.756
(1.770)! = 0.923 

Dividing the two equations gives 

exp I𝐵 J 1𝜆,-
− 1
1.770KL

exp I𝐵 J 1𝜆,-
− 1
1.675KL

= exp C𝐵 D
1

1.675 −
1

1.770FG =
0.923
0.204 

 
Hence 
 

𝐵 = 31.2 × ln(4.525) = 47	µm 
To obtain 𝜆,-  we note  
 



exp C47 D
1
𝜆,-

−
1

1.770FG = 0.923 

 
i.e. 

1
𝜆,-

=
1

1.770 +
1
47 ln 0.923 =

1
1.775 

Hence 𝜆,- = 1.775 µm 
 
Hence 
 

𝛼*+ =
0.756
𝜆! + exp C47 D

1
1.775 −

1
𝜆FG 

Differentiating w.r.t. 𝜆 gives 
 

𝑑𝛼*+
𝑑𝜆 = −

4 × 0.756
𝜆) +

47
𝜆& 	exp C47 D

1
1.775 −

1
𝜆FG 

 
Setting the derivative equal to zero gives 

4 × 0.756
𝜆" = 47	 exp C47 D

1
1.775 −

1
𝜆FG 

Hence 

47 D
1
𝜆 −

1
1.775F = ln(𝜆" × 15.54) 

i.e. 

𝜆 =
1

1
47 ln(𝜆

" × 15.54) + 1
1.775

=
1

0.6218 + 0.06383 ln 𝜆 

 
First estimate for 𝜆 = 1.55 µm 
Second estimate for 𝜆 = 1.539 µm 
Third estimate for 𝜆 = 1.540 µm 
Fourth estimate for 𝜆 = 1.540 µm 
 
Value of attenuation at 𝜆 = 1.540 µm is 

𝛼*+ =
0.756
(1.54)! + exp C47 D

1
1.775 −

1
1.54FG = 0.152	dB/km 

 
 
d) To estimate the capacity we assume Shannon capacity 
 

𝐶 = 2𝐵 log&(1 + 𝑆𝑁𝑅) 
And 𝑆𝑁𝑅 = .

&/0+$%%
 

 
And we take ℎ𝜈 = 0.75 eV at 𝜆 = 1.675 µm and ℎ𝜈 = 1 eV at 𝜆 = 1.260 µm 
 
Minimum attenuation is 0.152 dB/km and the maximum attenuation is 0.3 dB/km 
 



Initial power is 1W = 30 dBm. Hence 𝑃 varies between 22.5 dBm=178 mW and 26.2 
dBm=417 mW 
 
Hence worst case capacity with  ℎ𝜈 = 1 eV and   𝑃=178 mW 
 
Giving  
 

𝐶 = 2 × 59 × 10$& × log& C1 +
0.178

2 × 1.6 × 101$2 × 59 × 10$&G = 1.56 × 10$) = 2	Pbit/s 
 
Likewise best case capacity with  ℎ𝜈 = 0.75 eV and 𝑃=417 mW 
 

𝐶 = 2 × 59 × 10$& × log& C1 +
0.417

2 × 0.75 × 1.6 × 101$2 × 59 × 10$&G = 1.75 × 10$)

= 2	Pbit/s 
 
 
Hence to one significant figure we estimate the capacity to be 2 Pbit/s 
 
 
Assessor’s comments 
 
This question was answered 13 of the 22 candidates. It dealt with fibre capacity and 
attenuation. Part (a) was straightforward recall and most correctly identified the term and 
being due to Rayleigh scattering. For part (b), generally it was answered correctly, albeit 
some students failed to convert the SNR from decibels into linear units in order to use 
Shannon’s formula and several students used a narrow band approximation for wavelengths 
in the region of 1550 nm to convert the bandwidth of the O-U band into THz, which resulted 
in typically errors of 10% or more in the calculated capacity. For part (c), most students 
managed to extract parameters to allow both the value and wavelength associated with 
minimum attenuation, making the necessary approximations in order to solve the problem. 
The final part (d) was without a doubt the most challenging with only a couple of students 
able to give a reasonable estimate of the capacity. While some students noted that the SNR 
would be limited by shot noise, they failed to use the attenuation profile (or even that it 
would be 0.3 dB/km or less which was given in part (c), to calculate the SNR at the receiver 
(after 25 km). None of the students used the approach mentioned in lectures of looking at 
the best case and worst-case SNR at the receiver to bound the capacity (and for this case it 
was deliberately chosen such that both would give the same capacity to 1 s.f.)  
 
 
 
  



2.  
a)  

i) 𝑏𝑃" represents the Kerr nonlinearity, i.e. the power dependent refractive index 
ii) First note that to determine the optimum easier to work with the noise to signal 
ratio – the reciprocal of the 𝑆𝑁𝑅 so 

1
𝑆𝑁𝑅 =

𝑎
𝑃 + 𝑏𝑃

& 

To determine the optimum we differentiate w.r.t. 𝑃 to give 
 

𝑑
𝑑𝑃 C

1
𝑆𝑁𝑅G = −

𝑎
𝑃& + 2𝑏𝑃 

 
At the optimum the derivative is zero and hence 
 

𝑎
𝑃& = 2𝑏𝑃 

i.e.  

𝑃" =
𝑎
2𝑏 

Therefore  
 

𝑃345 = \
𝑎
2𝑏

&
 

hence 

𝑆𝑁𝑅678 =
𝑃345

𝑎 + 𝑏𝑃345"
 

=
𝑃345

𝑎 + 𝑏 𝑎
2𝑏

 

=
2𝑃345
3𝑎  

Therefore 
 

𝑠 =
𝑆𝑁𝑅

𝑆𝑁𝑅678
 

=
𝑃

𝑎 + 𝑏𝑃" ×
3𝑎
2𝑃345

 

=
3𝑎𝑝

2𝑎 + 2𝑏𝑃" 

=
3𝑎𝑝

2𝑎 + 2𝑏𝑃345" 𝑝"
 

=
3𝑎𝑝

2𝑎 + 2𝑏 𝑎
2𝑏 𝑝

"
 

=
3𝑝

2 + 𝑝" 

As required 



iii) for 𝑝 ≪ 1 𝑠 ≈ 3/2𝑝	 so 10 log$%(𝑠) = 10 log$%(𝑝) + 10 log$%(3/2) so gradient 
of 1 dB/dB. Likewise for 𝑝 ≫ 1 𝑠 ≈ 3/𝑝& so 10 log$%(𝑠) = −20 log$%(𝑝) +
10 log$%(3) so gradient of -2 dB/dB 
 

 
b) 

i) 𝛼*+ = 0.2 dB/km (so 𝛼 = 0.0461	km-1), D=17 ps/nm/km (so |𝛽&| = 17/0.784 =
21.6 ps2/km), 𝐵3 = 5 THz, 𝛾 = 1.3 W-1km-1, 𝐿 = 100 km (so 𝐿9:: = 21.5 km).  
 

𝐶;<, =
8𝛾&𝐿9::& 𝛼
27𝜋|𝛽&|

ln g
𝜋&|𝛽&|𝐵3&

𝛼 h = 1.833 × 10&!	𝐽1& = 1.833		(𝑝𝐽)1& 

 
 

𝑁=>? = 10;@/$%ℎ𝜈(𝐺 − 1) = 5.124 × 101$(	𝐽 = 5.124 × 101)	𝑝𝐽 
 

𝑃𝑆𝐷345 = l 5.124 × 101$(

2 × 1.833 × 10&!
&

= 2.409 × 101$!	𝐽 = 0.02409	𝑝𝐽 

 
Total power is 50 × 0.02416 × 0.095 = 114	mW 
 
ii) If we neglect the degradation we note  
after 1 span 𝑆𝑁𝑅345 =

%.%&!$'
"/&×).$&!×$%"'

= 314 = 25.0 dB 

and hence after 40 spans 𝑆𝑁𝑅*+ = 25 − 10 log$%(40) = 9 dB 
to take into account the degradation we define use equation (3) with 𝑝 at the start 
of life and 𝑝/2 at the end of life and set the 𝑆𝑁𝑅 equal so 

 
3𝑝

2 + 𝑝" =
3(𝑝/2)

2 + (𝑝/2)" 

 
Hence 

 

2 + 𝑝" = 2g2 +
𝑝"

8 h 

i.e. 
 

𝑝" C1 −
1
4G = 2 

So 𝑝" = 8/3 and hence 
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the power is increased the SNR increases linearly, but eventually
the SNR decreases as the inverse square of the power. Between
these two extremes a maximum signal to noise ratio denoted
SNR0 is observed at a power of P0. If we define a normalized
power p = P/P0 then with a little algebra it is straightforward
to show that s = SNR/SNR0 being a normalized SNR is:

s =
3p

2 + p3 (2)

The conventional interpretation of Fig.1, which plots the nor-
malized SNR (s) as a function of the normalized power (p) is to
observe that the nonlinearity of the fiber presents a considerable
detriment to increasing the SNR by increasing the launch power,
placing a limit on the maximum achievable SNR. While this
is indeed true, from the perspective of robust systems design,
this same nonlinearity can be exploited to minimize the impact
on the system performance to variations in the performance of
system components.
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Fig. 1. Normalized SNR versus normalized launch power
(normalized to the SNR at the optimum launch power and to
the optimum launch power respectively)

In order to demonstrate the interaction of perturbations with
the nonlinearity, we consider the case whereby the transmitted
power decreases by 3 dB due to aging over its lifetime such that
PBoL/PEoL = 2, where PBoL is the launch power at the beginning
of life (BoL) and PEoL is the launch power at the end of life
(EoL). If the corresponding normalized parameters are pBoL,
pEoL = pBoL/2, sBoL and sEoL, then as illustrated in Table 1 there
is a solution such that sBoL = sEoL, with pBoL = +1.4 dB.

pBoL (dB) sBoL (dB) pEoL sEoL (dB) DSNR (dB)

-3 -1.5 -6 -4.3 2.8

0 0 -3 -1.5 1.5

+3 -2.2 0 0 2.2

+1.4 -0.5 -1.6 -0.5 0

Table 1. Impact of provisioning with the nonlinear perfor-
mance from Fig. 1 on SNR over life with a 3 dB degradation in
power

Consequentially a 3 dB variation in power has been reduced
to a 0.5 dB variation in the SNR highlighting improvement af-
forded by the nonlinearity with regards to the interaction be-
tween variations and the system performance. More generally if
pEoL = pBoL/M then sBoL = sEoL for some optimum p̂BoL is:

p̂BoL =
3

s
2M2

M + 1
(3)

and corresponding optimal SNR is given by ŝ being equally to
sBoL = sEoL which is given by

ŝ =
3
2

3
p

2M2(M + 1)2

M2 + M + 1
(4)

As can be seen in Fig. 2 if the optimum bias points are used such
that pBoL = p̂BoL, the impact of the power variation in decibels
given by 10 log10(M) on the SNR penalty is significantly less
than might have been expected from a linear analysis1.
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Fig. 2. Optimized SNR penalty versus power variation over
life 10 log(PBoL/PEoL) = 10 log10(M) at the optimal p̂BoL such
that sEoL = sBoL has solution ŝ

The aim of this introductory section is to highlight, that while
nonlinearities are detrimental in terms of overall performance
from a design perspective there are significant benefits in terms
of reducing the variation of performance in the presence of
uncertainty.

3. EXPLOITING NONLINEARITIES TO REDUCE THE IM-
PACT AMPLIFIER OUTPUT POWER UNCERTAINTY

To quantify issues due to margins associated with optical ampli-
fiers, we first consider the unperturbed ideal case in the nonlin-
ear regime. For this unperturbed case we calculate the received
SNR based on the model described in the Appendix with the
parameters of table 6 and plot in Fig. 3 the worst case SNR across
all WDM channels as a function of the uniform launch power
per channel. As expected a 3 dB reduction in SNR is observed
each time the number of spans are doubled, with an optimum
launch power of approximately -1.3 dBm per channel.

In order to investigate the interaction between nonlinearity
and margins we first consider the case where the launch powers
are perturbed by a fixed multiplier. Such an error may occur
due to inaccurate power monitors or VOA settings. Fig. 4 shows
the minimum SNR across all channels as a function of the in-
tended launch power for different power perturbations from
0 to 1 dB, with 1 dB corresponding to a ±1 dB perturbation to
the output power, i.e. 2 dB peak-peak (pk-pk). It can be seen
that the received SNR shows a spread of ⇡1 dB in the linear
transmission regime, ⇡2 dB in the highly nonlinear regime but
at the optimal launch power show a much reduced spread of
⇡0.25 dB. Fig. 5 shows the SNR penalty as a function of the
power perturbation at the optimum flat launch power. The SNR
penalty is independent of the number of transmission spans.

1If we define MdB = 10 log10(M) then for 0  MdB  3 the SNR penalty
DSNRdB in decibels varies as DSNRdB = ln(10)M2

dB/40



𝑠 =
3n8/3&

2 + 8/3 = 0.89 = −0.5	dB 

Hence the initial 𝑆𝑁𝑅 is 8.5 dB 
 
 
 
Assessor’s comments 
 
This question was answered 11 of the 22 candidates and was concerned with optical fibre 
communication systems operating in the nonlinear propagation regime. Part (a) was 
generally answered well albeit somewhat surprisingly asking the students to sketch how the 
SNR changed as a function of power on a double log scale caused some issues, even through 
in lectures it was only ever show in this way (with asymptotic gradient 1 dB/dB in the linear 
regime and -2 dB/dB in the nonlinear regime). For part (b) in general the straightforward 
part i) was generally answered well albeit in many cases having determined the optimum 
power spectral density, they failed to determine the total power but determining the power 
per wavelength and then multiplying this by the number of wavelengths. The second part of 
(b) namely (b) (ii) was answered well by the handful of students who realised that the 
question meant using the result given in part (a) and setting the initial SNR to the final SNR 
once the power had been reduced by 3 dB. Occasionally the SNR at the end of 100 km span 
rather than the required 40x100 km spans was given resulting in a 16 dB error in the 
resulting SNR. 
 
  



 
3.  
a) Equalisation stages are 

• Coherent detection equalisation 
• Static channel equalisation 
• Adaptive channel equalisation 

 
 

b) Rectangular Nyquist spectrum means that a 95 GBd signal will occupy 95 GHz of optical spectrum. 
At 1550 nm, 100 GHz occupies 0.8 nm so 95GHz corresponds to 0.76 nm and the chromatic 
dispersion from 200 km is  

 
17 × 0.76 × 200 = 2584	ps 

 
The sampling rate is 95 × "&

"$
= 98 GSa/s therefore the number of tap to span 2584 ps 

is  
 
𝑁CD = 1 + 2584 × 101$& × 95 × 102 × "&

"$
= 255 taps 

 
c) Using the overlap and save algorithm with an 𝑁 point FFT the number of complex multiplies 

per sample 𝑁E6 is  
 

𝑁E6 =
𝑁 log&(𝑁) + 𝑁
𝑁 − 𝑁CD + 1

 

Given 𝑁CD = 255 we expect the minimum value of 𝑁 to be 512 which gives 
 

𝑁E6 =
512 × 9 + 512
512 − 255 + 1 = 19.8 

 
Given there are no technological limitations regarding the FFT size let us consider 𝑁 =
1024 which gives 

 

𝑁E6 =
1024 × 10 + 1024
1024 − 255 + 1 = 14.6 

 
 

Increasing to 𝑁 = 2048 gives 
 

𝑁E6 =
2048 × 11 + 2048
2048 − 255 + 1 = 13.7 

Increasing to 𝑁 = 4096 gives 

𝑁E6 =
4096 × 12 + 4096
4096 − 255 + 1 = 13.9 

 



Hence the optimum value of 𝑁 is 2048. The power consumption per polarisation is  
 
𝑃 = 13.7 × 0.5 × 101$& × 98 × 102 = 0.67	𝑊 and hence for two polarisations the 
total power consumption is 1.34 W. 

 
d) PMD coefficient is 0.1 ps/√km and therefore for 200 km the mean DGD is ⟨Δ𝜏⟩ =

0.1 × √200 = 1.41 ps 

From data sheet 𝑃(Δ𝜏 > 𝑥) ≈ !
F

8
⟨HI⟩

exp I− !8(

F⟨HI⟩(
L 

 
With 8

⟨HI⟩
= 5  𝑃(Δ𝜏 > 𝑥) = 101$" 

 
Hence span in samples is 5 × 1.41 × 101$& × 98 × 102 = 0.7 
 
Only need two taps so for the 2x2 MIMO equaliser total of 8 taps so 8 complex 
multiplications 
 
Total power would be 8 × 98 × 102 × 0.5 × 101$& = 0.4 W 
 
N.B. In addition to this there would be power required for the updating which would 
be a similar magnitude if updating at the symbol rate, however PMD varies much 
more slowly – typically kHz so can reduce update rate by several orders of 
magnitude, so power required for update is negligible and hence the overall power is 
approximately 0.4 W 

 
e) With 100 ps , 100×0.76=76 ps and hence number of taps is  

76 × 101$& × 95 × 102 ×
32
31 = 7.4 

Simple estimate would be that power consumption goes up by 4 to 1.6 W but would 
be better to modify the DSP design to have an 8-tap equalizer per polarization requiring 
0.4 W so 1.2 W in total (with the MIMO equalizer still only having 2 taps). 
 

Assessor’s comments 
 
This question was answered by 20 of the 22 candidates. The first half of the question, parts 
(a) to (c) where generally answered well with most students able to correctly determine the 
number of FIR filter taps, then correctly optimising the FFT size to minimise the number of 
complex multiplications required and then subsequently calculated the power required. 
While there were occasional errors such as using the symbol rate as opposed to the sample 
rate, or forgetting to double to total power to account for the two polarisations in general 
the part (c) was answered well by most students. Part (d) presented challenges to most 
students. While most were able to calculate the peak DGD corresponding to the given 
outage probability and hence deduce that two taps were required for each of the filters in 
the adaptive equalisers, a significant number of students calculated the power consumption 
assuming an FFT method was being used, even when this indicated the number of complex 



multiplications increased compared to implementing directly in the time domain (which 
should have been used). In addition, a number of students merely doubled the power when 
considering the two polarisations rather than multiplying by four to take into account the 
adaptive equaliser structure used to compensate for PMD. The final part of the question 
asked students to consider how they could modify the DSP structure if the adaptive 
equaliser also needed to compensate for residual chromatic dispersion. While some 
students correctly calculated that the number of taps required to compensate the residual 
chromatic dispersion, no one correctly identified that the optimal solution from a power 
consumption point of view would be to modify the DSP to have adaptive chromatic 
dispersion compensating filters for each polarisation followed by the previous MIMO 
adaptive equaliser to correct for PMD. 
 


