EGT3
ENGINEERING TRIPOS PART IIB

```
Tuesday 4 May \(2021 \quad 1.30\) to 3.10
```


Module 4B23

OPTICAL FIBRE COMMUNICATION

Answer not more than two questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed.
Attachment: 4B23 Optical Fibre Communication formula sheet (2 pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of the exam.

The time taken for scanning/uploading answers is 15 minutes.
Your script is to be uploaded as a single consolidated pdf containing all answers.

Version SJS/1.3

1 A step index optical fibre has a core radius $a=4 \mu \mathrm{~m}$ with core refractive index $n_{c o}=1.45$ and cladding refractive index $n_{c l}=1.445$. The attenuation measured in $\mathrm{dB} / \mathrm{km}$ as a function of optical wavelength λ may be modelled as

$$
\alpha_{d B}=\frac{A}{\lambda^{4}}+\exp \left[B\left(\frac{1}{\lambda_{I R}}-\frac{1}{\lambda}\right)\right]
$$

where A, B and $\lambda_{I R}$ are constants.
(a) State the physical mechanism that is responsible for the term A / λ^{4} in the equation above.
(b) The signal to noise ratio is 30 dB over the entire $\mathrm{O}-\mathrm{U}$ band (1260 nm to 1675 nm). Estimate the total data capacity, stating any assumptions made.
(c) The attenuation follows the equation above, taking specific values of $0.3 \mathrm{~dB} / \mathrm{km}$ at 1260 nm and 1675 nm , and $1 \mathrm{~dB} / \mathrm{km}$ at 1770 nm . Obtain the constants A, B and $\lambda_{I R}$ and hence estimate the minimum value of attenuation and the minimum attenuation wavelength.
Hint: To solve the resulting transcendental equation, rearrange it to the form

$$
x_{n+1}=\frac{1}{a+b \ln \left(x_{n}\right)}
$$

This results in a convergent solution with x_{n+1} being an improved approximation upon x_{n} where a and b are constants to be determined.
(d) The maximum power in the optical fibre is 1 W . Assuming nonlinear effects may be neglected, estimate to one significant figure the capacity of the O-U band operating over 25 km of optical fibre.

Version SJS/1.3

2 Nonlinear effects in optical fibres present a key limitation for long-haul optical fibre communication systems.
(a) In an optical fibre communication system the signal to noise ratio (SNR) as a function of power P can be written as

$$
S N R=\frac{P}{a+b P^{3}}
$$

where a represents the additive linear noise and b represents the nonlinear interactions which occur in the fibre.
(i) State what nonlinear phenomenon is modelled by the term $b P^{3}$ in the equation above.
(ii) For any nonlinear transmission system there is an optimum launch power $P_{o p t}$ at which a maximum signal to noise ratio $S N R_{\max }$ is observed. If we define $p=P / P_{\text {opt }}$ as the normalised power and $s(p)=S N R / S N R_{\max }$ as the normalised $S N R$ as a function of normalised power, show that

$$
s(p)=\frac{3 p}{2+p^{3}}
$$

Hint: You may find it helpful to first maximise the $S N R$ as a function of P to obtain expressions for $P_{\text {opt }}$ and $S N R_{\text {max }}$ in terms of a and b.
(iii) Sketch $10 \log _{10}(s)$ as a function of $10 \log _{10}(p)$, highlighting salient features including the asymptotic behaviour in the regions where $p \ll 1$ and $p \gg 1$.
(b) A WDM system transmits over 4000 km of single mode optical fibre 50 WDM channels, providing a total capacity of $20 \mathrm{Tbit} / \mathrm{s}$. Each WDM channel transmits $400 \mathrm{Gbit} / \mathrm{s}$ at 95 GBd , with the transmitter employing digital signal processing to create a rectangular Nyquist spectrum. The signal is amplified every 100 km using an EDFA with gain 20 dB , noise figure 6 dB and bandwidth 5 THz . At the operating wavelength of 1550 nm , the optical fibre has an attenuation of $0.2 \mathrm{~dB} / \mathrm{km}$, dispersion coefficient of $17 \mathrm{ps} / \mathrm{nm} / \mathrm{km}$ and nonlinear coefficient of $1.3 \mathrm{~W}^{-1} \mathrm{~km}^{-1}$.
(i) Assuming that a 100 GHz WDM grid is used, calculate the total output power required for the EDFA if the system operates at the optimal launch power with 50 WDM channels.
(ii) Due to aging, the launch power decreases by 3 dB over the lifetime of the system. If the initial launch power is optimised to minimise the $S N R$ variation due to the degradation, estimate the corresponding initial $S N R$ at the receiver.

Version SJS/1.3

3 A $800 \mathrm{Gbit} / \mathrm{s}$ signal is transmitted over 200 km of single mode optical fibre using 95 GBd PDM-32QAM. The transmitter employs digital signal processing to create a rectangular Nyquist spectrum, with the chromatic dispersion compensated digitally at the receiver. At the operating wavelength of 1550 nm , the optical fibre has an attenuation of $0.2 \mathrm{~dB} / \mathrm{km}$, dispersion coefficient of $17 \mathrm{ps} / \mathrm{nm} / \mathrm{km}$, a PMD coefficient of $0.1 \mathrm{ps} / \sqrt{\mathrm{km}}$ and nonlinear coefficient of $1.3 \mathrm{~W}^{-1} \mathrm{~km}^{-1}$.
(a) List the equalisation stages employed in a digital coherent receiver.
(b) Calculate the minimum number of taps $N_{C D}$ required to compensate the chromatic dispersion in the 95 GBd signal transmitted over the 200 km link if the digital coherent receiver uses an oversampling rate of $32 / 31$.
(c) Assuming appropriate frequency domain implementation, estimate the minimum power consumption required to realise digital chromatic dispersion compensation for the 95 GBd PDM-32QAM signal assuming the energy required to perform a complex multiply is 0.5 pJ . You may assume there are no technological restrictions regarding the FFT size. [30\%]
(d) An adaptive equaliser is used to correct for the PMD present in the signal. Estimate the total power consumption of the adaptive equaliser if the outage probability due to the PMD should be less than 10^{-13}.
(e) If the adaptive equaliser is also required to compensate for $\pm 100 \mathrm{ps} / \mathrm{nm}$ of residual chromatic dispersion how would this change the design of the digital signal processing subsystems?

END OF PAPER

Formula

$\langle S\rangle=\frac{1}{2} \frac{n}{\eta_{0}}\left|E_{0}\right|^{2}$

$$
\begin{gathered}
P(z)=P(0) \exp (-\alpha z) \\
L_{e f f}=[1-\exp (-\alpha L)] / \alpha
\end{gathered}
$$

$$
v_{p}=\frac{\omega_{0}}{\beta}=\frac{c}{n}
$$

$$
v_{g}=\frac{d \omega}{d \beta}
$$

$$
n_{g}=c / v_{g}
$$

$$
D=-\frac{2 \pi c}{\lambda^{2}} \beta_{2}=-\frac{\lambda}{c} \frac{d^{2} n}{d \lambda^{2}}
$$

$$
\Delta t=D \Delta \lambda L
$$

$$
V=k_{0} a \sqrt{n_{c o}^{2}-n_{c l}^{2}}
$$

$$
J_{m-1}(V)=0
$$

$$
F(r)=\exp \left(-\frac{r^{2}}{r_{0}^{2}}\right)
$$

$$
\eta=\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \exp \left(-\frac{\Delta^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)
$$

Notes

$\langle S\rangle$ - time averaged Poynting Vector, E_{0}-complex electric field, $\eta_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}=377 \Omega, n$ is refractive index.
α in nepers $/ \mathrm{km}$, related to loss in terms of $\alpha_{d B}$, the loss in $\mathrm{dB} / \mathrm{km}$ via $\alpha \approx 0.23 \alpha_{d B}$

Effective length $L_{\text {eff }}$ associated with L and loss α
Phase velocity v_{p}, for electric field $E=E_{0} e^{j\left(\omega_{0} t-\beta z\right)}$, where $\beta=k_{0} n$ and n is refractive index and $k_{0}=2 \pi / \lambda$ (note λ always refers to the wavelength in vacuo).
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Group velocity v_{g} of a modulated wave $e^{j(\omega t-\beta z)}$
Group refractive index $n_{g}=n+\omega \frac{d n}{d \omega}=n-\lambda \frac{d n}{d \lambda}$
Dispersion coefficient $D: \beta_{2}=\frac{d^{2} \beta}{d \omega^{2}}$. For $\lambda=1550 \mathrm{~nm}$ $D(p s / n m / k m)=-0.78 \times \beta_{2}\left(p s^{2} / \mathrm{km}\right)$

Dispersion Δt, with dispersion coefficient D, spectral width $\Delta \lambda$, over a distance L. For 1550 nm 100 GHz spectrum corresponds to 0.8 nm

Normalised wavenumber for step index fibre. Core radius a, core refractive index $n_{c o}$, cladding refractive index $n_{c l}$
Cutoff criterion for the modes. $L P_{m n}$ is $n^{t h}$ solution of $J_{m-1}(V)=0$ where J_{m} is the $m^{t h}$ order Bessel function of the first kind

Gaussian approximation for fundamental mode with mode field radius: $r_{0}^{2}=\frac{a^{2}}{\ln V}$

Overlap integral between two normalised Gaussian fields separated by Δ with the mode field radii σ_{1} and σ_{2}

First n zeros for $J_{k}(x)$

n	1	2	3	4	5
0	2.405	5.520	8.654	11.792	14.931
1	3.832	7.016	10.173	13.324	16.471
2	5.136	8.417	11.620	14.796	17.960
3	6.380	9.761	13.015	16.223	19.409
4	7.588	11.065	14.373	17.616	20.827
5	8.771	12.339	15.700	18.980	22.218

Formula

$$
\begin{gathered}
S_{3 d B}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right] \\
i=R P=R|A|^{2}
\end{gathered}
$$

$$
\phi=\gamma P
$$

$$
\frac{\partial A}{\partial z}=j \frac{\beta_{2}}{2} \frac{\partial^{2} A}{\partial t^{2}}
$$

$P(\Delta \tau>x) \approx \frac{4}{\pi} \frac{x}{\langle\Delta \tau\rangle} \exp \left(-\frac{4 x^{2}}{\pi\langle\Delta \tau\rangle^{2}}\right)$

$$
N_{N L I}=C_{N L I} G_{T X}^{3}
$$

$$
N_{A S E}=10^{N F / 10} h v(G-1)
$$

$$
G_{o p t}=\sqrt[3]{\frac{N_{A S E}}{2 C_{N L I}}}
$$

$$
N_{q}=h v P
$$

$$
N_{c m}=\frac{N \log _{2}(N)+N}{N-N_{f}+1}
$$

$$
\boldsymbol{h}:=\boldsymbol{h}-\mu \frac{\partial|\epsilon|^{2}}{\partial \boldsymbol{h}^{*}}
$$

$$
\begin{gathered}
C=1-H_{2}\left(p_{b}\right) \\
C=B \log _{2}(1+S N R)
\end{gathered}
$$

Notes

Scattering matrix of a 3 dB coupler

Current in a photodiode, responsivity R, electric field amplitude A, optical power $P=|A|^{2}$

Kerr nonlinear phase shift: $\gamma=n_{2} k_{0} / A_{\text {eff }}$ where for optical fibres it can be assumed $n_{2}=2.6 \times 10^{-20} \mathrm{~m}^{2} / \mathrm{W}$

Effect of dispersion in retarded frame of reference. With loss and nonlinearity becomes the NLSE

$$
\frac{\partial A}{\partial z}=-\frac{\alpha}{2} A+j \frac{\beta_{2}}{2} \frac{\partial^{2} A}{\partial t^{2}}-j \gamma|A|^{2} A
$$

Probability that with mean $\operatorname{DGD}\langle\Delta \tau\rangle$ the instantaneous DGD $\Delta \tau$ exceeds x

Nonlinear noise power density for input PSD of $G_{T X}$ with

$$
C_{N L I}=\frac{8 \gamma^{2} L_{e f f}^{2} \alpha}{27 \pi\left|\beta_{2}\right|} \ln \left(\frac{\left|\beta_{2}\right|}{\alpha} \pi^{2} B^{2}\right)
$$

Power spectral density for ASE amplifier with gain G and noise figure $N F . h=6.634 \times 10^{-34} \mathrm{Js}$ and for $\lambda \approx 1550 \mathrm{~nm}, h v \approx 1.3 \times 10^{-19} \mathrm{~J}=0.8 \mathrm{eV}$.

Optimum power spectral density

PSD for quantum noise
Number of complex multiplications per sample for overlap and save implementation of a filter of length N_{f} using N point FFT (that in turn requires $0.5 N \log _{2} N$ complex multiplications)

Stochastic gradient update for taps \boldsymbol{h} with error ϵ and convergence parameter μ

Capacity of binary symmetric channel where

$$
H_{2}\left(p_{b}\right)=-\left(1-p_{b}\right) \log _{2}\left(1-p_{b}\right)-p_{b} \log _{2} p_{b}
$$

Shannon capacity (for one polarisation), with bandwidth B and signal to noise ratio $S N R$

4B23 Optical Fibre Communication 2020/21 numerical answers

1

(a) -
(b) $1.2 \mathrm{Pbit} / \mathrm{s}$
(c) $A=0.756 \mu \mathrm{~m}^{4}, B=47 \mu \mathrm{~m}, \lambda_{I R}=1.775 \mu \mathrm{~m}, \lambda=1.540 \mu \mathrm{~m}, \alpha_{d B}=0.152 \mathrm{~dB} / \mathrm{km}$
(d) $2 \mathrm{Pbit} / \mathrm{s}$
2.
(a)
(b) (i) 114 mW , (ii) 8.5 dB
3.
(a)
(b) 255
(c) 1.34 W
(d) 0.4 W
(e) -

