## 1 (a)(i)

Can do by 2 methods, either direct or break down into 3 elements and multiply.

Directly:

V\_1=A V2 with I2=0

V2=(Za/(Za+Zb)V1. A=(Za+Zb)/Za

B = V1/I2 with V2=0 (short).B= Zb

C=I1/V2 with I2 =0. -> 1/( Za/(Za+Zb) \*(Za//(Za+Zb))) = (2Za+Zb)/Za^2

D=(Za//Zb)/Za

$$\frac{\frac{Z_a + Z_b}{Z_a}}{\frac{2Z_a + Z_b}{Z_a^2}} \quad \frac{Z_b}{\frac{Z_a + Z_b}{Z_a}}$$

Alternative breakdown method:

$$\begin{bmatrix} 1 & 0 \\ 1/Z_a & 1 \end{bmatrix} \begin{bmatrix} 1 & Z_b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1/Z_a & 1 \end{bmatrix}$$

(ii) ABCD of line:

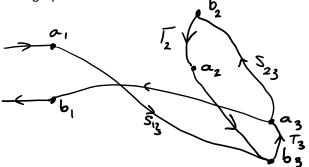
$$\begin{bmatrix} 0 & jZ_a/2 \\ j\frac{2}{Z_a} & 0 \end{bmatrix}$$

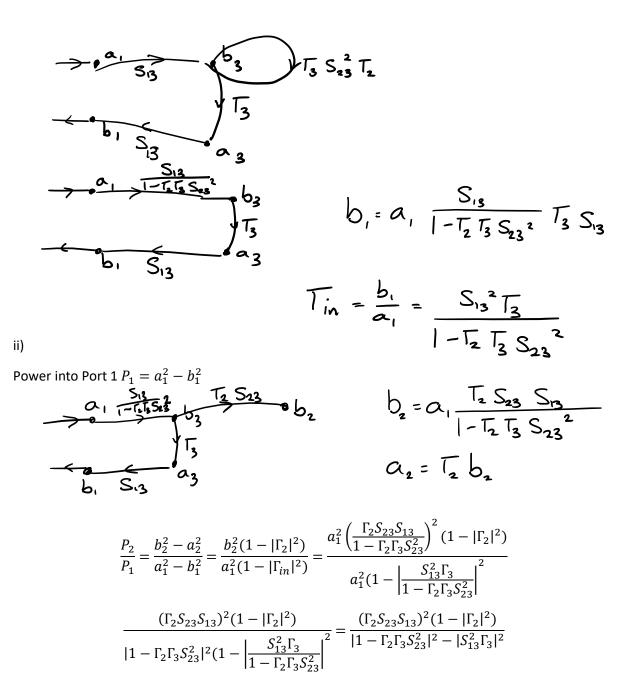
Overall ABDC matrix:

$$\begin{bmatrix} 0 & j75\\ j\\ 75 & 0 \end{bmatrix} \begin{bmatrix} 1+4j & 100j\\ 0.08+0.16j & 1+4j \end{bmatrix} = \frac{-12+6j}{-0.05+0.01j} \frac{-300+75j}{-1.333}$$
$$S_{21} = \frac{2}{A+\frac{B}{Z_0}+CZ_0+D}$$
$$S_{21} = 0.0852\angle -159^{\circ}$$

(b)

Using sig flow graphs:





This was generally answered quite well. Common mistakes included an assumption that B=C in the transmission matrix due to the reciprocal network, but this doesn't work due to the current definitions. In b(ii) most did not realise that the  $a_2$  and  $b_1$  terms need subtracting to get the power into the load (and not reflected) and the power into the network (and not reflected).

- (i) Wide band implies that harmonics can't be filtered. Since 3\*900>2500 don't need to worry about 3<sup>rd</sup> harmonics, just the 2<sup>nd</sup> and any intermods. 3<sup>rd</sup> order levels of both amplifiers are not that different, also 3<sup>rd</sup> orders will be much smaller at levels below OIP2, so it is B which is preferred.
- (ii) Potential spurs
   1.5Ghz 1050MHz (2<sup>nd</sup> order) out of band not a problem.
   1050\*2 2<sup>nd</sup> order in band poss problem.
   1.5+1.050 2<sup>nd</sup> order out of band.
   (2<sup>nd</sup> harmonic of 1.5 also out of band so ignore)

2\*1.5-1.050 3<sup>rd</sup> order in band. Amplifier B, IIP2 = 35-25=10dBm

2<sup>nd</sup> order level. 20dB below IIP2 so intermods will be 2\*20dB below OIP2 or -20dBm, harmonics are 6dB less still so -26dBm at 2.1GHz 3<sup>rd</sup> order = 30dB below IIP3, IM product will be 3\*30dB below OIP3 or -45dBm at

(iii) Worst case is assuming that all IM products will add in phase (little delay between stages).

$$OIP_3 = \left(\frac{1}{G_2(OIP_3')} + \frac{1}{OIP_3''}\right)^{-1}$$

OIP3\_A = 50dBm, OIP3\_B = 45dBm A before B: 44.98 (B dominates) B before A: 49.95 (A dominates) Most favourable to put A 1<sup>st</sup>. IIP3 is 49.95-(20+25)=5dBm.

Also acceptable to assume random phases:

$$OIP_3 = \left(\frac{1}{G_2^2(OIP_3')^2} + \frac{1}{OIP_3''^2}\right)^{-1/2}$$

(iv) SFDR = 2/3(OIP3 - Noise)
Ref noise to 1Hz BW give -100-10\*log(100e3)= -150dBm/Hz
-96.67dB/Hz^(2/3)

(b) (i)  $F = 1 + \frac{T_e}{T_0}$ 

NF = 10\*log10(1+350/290)=3.4dB

(ii) Line has NF of 3dB if the temperature is 290K, but we have a physical temp of 310K.

For the line:

F=1+(L-1)T/T0=3.16dB

2 (a)

Noise temp of input :

1e-3\*10^(-9.3)/(50e6\*1.38e-23)=726K

Noise figure of the cascade

$$F_l + \frac{F_a - 1}{G_l} = 4.48$$

6.5dB

Tc=(Fc-1)(290)=1009K

No = kB(Tc+Ti)BG = 1.38e-23\*(726+1009)\*50e6\*50=-72.22dBm

Examiners comment:

I common mistake was to attempt to use the taylor expansion to find the amplitudes of the components rather than by scaling in dB from the OIP2/OIP3. In (b) it is important to realise that the lossy line isn't at  $T=T_0$  so  $F \neq L$  3

a) Assuming short track lengths within the system itself.

min range is 0.5\*3e8\*20e-9 = 3m

However the dead time occurs after the end of the transmission of 50ns, which gives:

0.5\*3e9\*70ns = 10.5m

max unambiguous range = 0.5\*3e8\*1e-6 = 150m

$$\sigma = \frac{\lambda^2 G^2 |\Gamma|^2}{4\pi}$$

For a short  $|\Gamma| = 1$  so

 $\sigma = 7.16m^2$ 

Assuming alignment of antenna polarisation and gains.

$$P_{rx} = \frac{G_{tx}^2 P_{tx} \lambda^2 \sigma}{(4\pi)^3 R^4}$$

At max range, P\_rx = -100dBm

Gives range of 134m, this is inside the unambiguous range so we are power limited and this is the max range.

b) at max range we get -100dBm out of the antenna.

With 10dBi antenna and 1W EIRP the conducted power into the antenna must be 20dBm (100mW).

S11 required would have to be -120dB – (not feasible)

(c) i). 10m gives delay of 2\*10/3e8=6.67e-8s

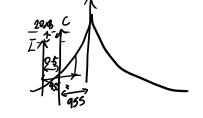
Freq diff will be 100e6/1e-6\*6.67e-8 = 6.66Mhz

Max unabigious range. Is when the freq ramp is 1/2 period out

0.5\*1e-6\*3e8 = 150m

(ii) cant switch as it is a CW radar. Isolation is through a circulator and good antenna matching. Poor isolation will result in a component with zero freq shift which results in DC after mixing, so require a good DC rejection filter.





 $L = C - S - I - 10 \log B$ 

Interferer is 955+500=1450kHz from LO. Phase noise spec is 500kHz.

```
-20 -50-10*log10(100e3)=-120dBc/Hz
```

4. i) Stability.

Need to first convert s-params to linear (10<sup>(S11dB/20)</sup>) as the s-params are a voltage term:

-0.1445 + 0.7545i 0.0199 + 0.0286i

1.3986 + 2.2010i 0.4913 - 0.7974i

K delta test.

**|**∆**|**=0.6941

K is 0.0793

Abs delta < 1, but K< 1 -> only conditionally stable.

## ii)

No matching =  $\Gamma_S$ =0

$$N = \frac{\left|\Gamma_{S} - \Gamma_{opt}\right|^{2}}{1 - \left|\Gamma_{S}\right|^{2}} = \left|\Gamma_{opt}\right|^{2}$$
$$\left|\Gamma_{opt}\right|^{2} = \frac{F - F_{min}}{4R_{N}/Z_{0}} \left|1 + \Gamma_{opt}\right|^{2}$$
$$\frac{4R_{N}/Z_{0}\left|\Gamma_{opt}\right|^{2}}{\left|1 + \Gamma_{opt}\right|^{2}} + F_{min} = F$$

F=2.1dB

Output conjugate matched for max gain.

$$G_{L_{max}} = \frac{1}{1 - |S_{22}|^2}$$

=15.77

$$G_{max} = |S_{21}|^2 G_{L_{max}}$$

=20.3dB

iii)

Assume the amplifier is unilateral (it almost is)

Transducer gain – 20.3dB (as calculated above)

Power gain = 24.17 dB (consider power returned due to input reflection (1/1-S11^2)

Available gain – 20.3 (equal transducer gain)

VNA would measure the transducer gain as S21 23 dB.

iv) Using 2.1dB noise figure. (blue construction on Smith chart)

N=0.36

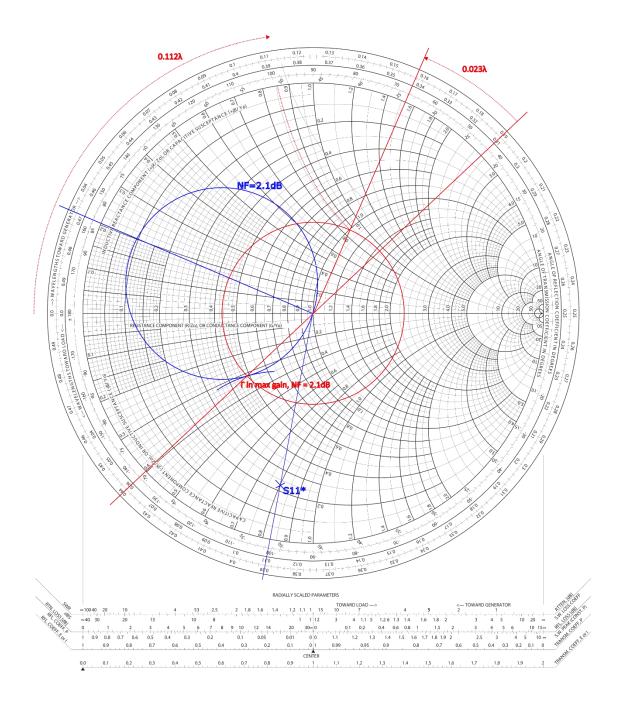
Centre of the NF circle is on the  $\Gamma_{opt}$  line, and we also know that it passes the centre of the Smith chart.

$$C_F = \frac{\Gamma_{opt}}{N+1} = 0.4412 \angle 156.8 \text{ (blue circle)}$$

Circle defines NF is constant, now need to find max gain. Plot S11\* and find closest approach of noise figure circle (not perfect but a good approximation).

$$\Gamma_{in} = 0.44 \angle -71^{\circ}$$
$$G_s = \frac{1}{|1 - S_{11}\Gamma_{in}|^2} = 2.01$$

So gain becomes 23.3dB



v)

Starting from  $\Gamma_{in}$  reflect though origin for admittance. Circle around centre to unity R circle. Want wide band so select the first intersection working towards load. Which gives length of 0.023 $\lambda$ . Reactive component required is +0.85j. Shortest method to generate this is an open stub – start at LSH for open in reactance -> 0.112 $\lambda$ 

Bandwidth is maximised by using short elements.

## b)

For maximum power we should be using conjugate match. So need to match 150 ohm to 25+32.5j.

Normalising both we get 3 and 0.5+0.65j

Plotting on smith chart can see that they both line on a circle around origin so the match can be made with a length of line.

Length should be 0.25+0.105  $\lambda$  = 0.355  $\lambda$ 

Examiners comment:

Not all correctly converted the dB S-parameters to linear (although this was not heavily penalised and the question is still possible with followed through answers). In (a)(iii) many tried to use datasheet equations (which some  $\Gamma s$  are hard to find) rather than the definitions of the gains which allow the previous result to be used. In (iv) gain circles can also be used for a more accurate result. (b) can also be solved analytically.

