
4B5 2022 solutions 

 

 

1.   

(a) The answer should include a description of (i) the photoelectric effect and (ii) 

Compton scattering.  The photoelectric effect was observed by Lenard in 1902 who 

showed that when light was incident on a metal surface, the energy of the emitted 

electrons increased with the frequency of the light.  In 1905, Einstein then used 

Planck’s theory of black-body radiation to describe light as consisting of quanta whose 

energy scaled with frequency.  In 1916, Millikan performed detailed experiments 

which tied up Lenard’s previous results with Einstein’s ideas. Answer might include 

a sketch of KE vs frequency, with a mention of work function. 

 

However, although we could describe light as comprising photons, it was not until 

Compton explored the scattering of X rays from materials that this was further 

developed.  His observation was that the scattered light also contained a component 

with longer wavelength, where the change in wavelength depended on the scattering 

angle.  This could only be explained by assuming that light comprises packets with a 

definite energy (h) and momentum (h/), which is consistent with a particle. 

Answer might include a sketch of scattered spectrum for a few different angles. 

 

(b) From the formula sheet, the wavelength of the secondary peak in Compton scattering 

is that ∆𝜆 =  
ℎ

𝑚𝑐
(1 − cos 𝜃).  The shift in wavelength is therefore 2.426 × 10−12 ×

0.5 𝑚 = 1.213 𝑝𝑚.  Therefore, the wavelength of the second peak will be 

0.8787× 10−11 𝑚.  This will be observed as well as a larger peak at the original 

wavelength of 1 × 10−11 𝑚.   

 

(c) The discussion should focus on the fact that the KG equation is second-order in both 

space and time, like the wave-equation, whereas the Schrödinger equation is second 

order in space and first order in time.  Therefore, the interpretation of the solutions 

is different, as the wave function squared from the KG equation does not represent 

a probability density.  The KG equation also gives rise to negative energy solutions 

which cannot happen with the Schrödinger equation (except in tunnelling). 



 

(d) The wavefunction itself has no physical significance or meaning, but its square 

represents the result of a measurement of position, i.e. |𝜓(𝑥)|2 yields the probability 

of the object being located at position x.  

 

 

 

2. 

 (a)  Schrödinger’s equation can be written in the regions to the left and right of the step as 

  (-ħ2/2m2/x2 ) I(x) = EI(x)   Region I 

 (-ħ2/2m2/x2 +V) II(x) = EII(x)   Region II 

The solutions to these equations are: 

I(x) = A1eik
1

x + B1e-ik
1

x where k1 =     

 

 

and II(x) = A2e-k
2

x  where k2 =    

 

Matching the wave-functions and their first derivatives at the boundary (x = 0) yields the following 

relationships:  

A1 + B1 = A2  

ik1A1 – ik1B1 = ik2A2 

i.e. B1/A1 = (k1 – k2)/(k1 + k2) 

The reflection probability is  B1/A12, which in this case equals 0.029.  This represents the probability 

that a given particle will be reflected from the potential step, so must lie between 0 & 1.  R does not 

represent the fraction of a particle which will be reflected.  If we pass a large number of electrons 

over this potential step, then on average, a fraction R of them will be reflected, but any individual 

electron will either be totally reflected or totally transmitted. 

 
 
(b)     
 When there is a different effective mass in both regions, then we must use the BenDaniel-Duke 

boundary conditions, which are (i) wave-functions and (ii) derivatives of the wave-functions divided 

by their effective mass must match at the interfaces, i.e. :  
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Given that m1 = 2.5m2, this reduces down to : 

 

𝐵1

𝐴1
=  

𝑘1 − 2.5𝑘2

𝑘1 + 2.5𝑘2
 

 

The reflection probability is  B1/A12, which in this case equals 0.003, which is almost a factor of 10 

lower than what we found when it was the same material on both sides of the junction. 

Examiner’s note – most students did not use the BenDaniel-Duke boundary conditions, and therefore 

overestimated the reflection probability.  If one makes this error, the calculated R is 0.146. 

 

(c). Probability density: 
 
 
 

 
 
 
 
 
 
   x=0            x=d       x 
 
 
 
 
If we say that the amplitude of the incident wave is 1, then the wave-function at the right 

hand edge of the barrier region is approximately: II(d) = e-k
2

d , so the transmission probability, 

T is roughly e-2k
2

d  .  We are using the assumption that the coefficient A2 ~ 0, as it is always << 

B2.   



Given the values of E, and V, we obtain a value for k2 = 1.15x109 m-1.  Therefore, the value of 

d at which the transmission probability is 20% is given by solving 0.2 =  𝑒−2𝑘2𝑑 from which 

we find (by taking the ln of both sides) that 1.61 = 2k2d => d = 0.7 nm.  

 
 
Assumptions: (i) only an exponentially decaying term in barrier, (ii) effective mass of 
electron in each region is the same 

To improve precision, would include full form of II taking into account the exponentially-

increasing term, and would determine transmission probability for entire structure. 

 

3. 

(a)  This is a resonant tunnelling device.  When a voltage is applied, the entire potential 
profile becomes sloped, and the conduction band edge on the left approaches bound state 
E1. 
 
 
 
 
 
 

 
 
 
                         
 

(b) The current, I depends on the transmission probability, T as follows: 

   
J

left
 = 

2e
D(E) f (E)T (E)dE

0

¥

ò  

 
 
 

As V is increased, the bound state energy E1 starts below Ef, then when V is large 
enough they coincide, causing a peak in T.  As V is further increased, there is no 
longer a match between E1 and Ef, and T starts dropping.  As we continue to increase 
V, eventually Thermal current will start to dominate and the conventional 
exponential increase in current with applied voltage for a diode will be observed. 
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(c)   
 

(i)  
 
 
 
 
 
 
 
 
 
 
There is a resonant state inside the well, i.e.. the length of the well is a half-integer number 
of electron wavelengths long.  The wavefunction is therefore that for the ground state in a 
quantum well. 
 
 
(ii) 
 
 
 
 
 
 
 
 
 
 
 
 
More challenging to draw, but the key point is the length of the well is no longer a half-
integer number of electron wavelengths long, so there are no bound states, and the 
electron travels through it incoherently. 
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(d) 
 
 
 

   
If the wells are close enough, the tail of the wave-functions within each well can extend 

appreciably into neighbouring wells.  This gives rise to a coupling between the wells, and 

generates new wave-functions which are combinations of the original ones.  For two wells, 

those combinations are the sum and difference between the original functions.  Hence, there 

will be two states instead of one.  For N wells, each state will become N closely spaced states.  

The closer the wells are to each other, the larger will be the splitting in energy.  This is similar 

to beats in the addition of waves: the closer the frequency, the more pronounced are the 

beats. 

As the wells are brought closer, the coupling increases and so therefore does the splitting of 

the energy levels. 

 

x 

x E1 

 

Now add in another well: 

Now for a very large number of wells: 

Energy levels become bands. 



 

4. 

(a) Band Engineering is when we combine semiconductors with different band gaps (in 

multilayer or superlattice structures) in order to create a potential profile with a specific 

electrical or optical property.  Examples are quantum wells and resonant tunnelling devices. 

 

(b) A heterojunction is a physical junction between two different materials.  Consider what 

happens when we take a piece of GaAs and dope it on one side to make AlGaAs (which will 

therefore be n-type).  GaAs has a lower band gap, and this will give rise to a band offset, which 

will cause some electrons to flow from the AlGaAs into the GaAs.  As a result of this, the 

AlGaAs and the GaAs will be positively and negatively charged, respectively.  This dipole layer 

of charge causes the bands to bend in the vicinity of the interface and creates two sheets of 

charge that are parallel to the interface.   

 

 

 

 
The 2-DEG is different in terms of its density of states: 
 
 
 

3D                                               2D    
E1/2                                    const.   



 
 
 
 
The individual steps/plateaus correspond to sub-bands.   

Electrons in a 2-DEG are confined in one direction (z) and free to move in the other two (x, y) 

parallel to the interface.  The energy of these electrons are given by: 

 

Where the En are the discrete energy eigenstates of the potential well.  For most purposes, 

the triangular well can even be approximated as a square well.  The x,y components of energy 

are continuous but the En are discrete.  For each En, there will be a free-electron parabola in 

the x-y plane, and this manifests as sub bands.  The form is as shown below: 

 

 

(c) 

The emission wavelength will be the energy of the transition from the ground state electron 

state to the corresponding hole state plus the band gap. 

Assume that well is infinitely deep (assumption 1) and square (assumption 2).  Therefore, we 
can write energy eigenvalues as : 

 

    
2 2

28
n

h n
E

ml
=     where l is the width of the well, and m is the electron mass within the well. 

 
For the Valence band, then, Eh1 = 0.0124 eV, and for the Conduction band Ee1 = 0.0623 eV 

n(E) 

E 

n(E) 

E 



 emission wavelength of laser  = 1.1 eV + 0.0124 eV + 0.0623 eV = 1.1747 eV. 

 1.17475 eV = 1.88 x 10-19 J = hc/ =>  = 1.06 m.  The accuracy of this answer depends 
on the depth of the potential well, i.e. can we assume that it is infinitely deep?  In 
reality, the well will be more likely to be less than 1 eV deep, so an energy level of 0.25 
eV is not far below that, meaning the accuracy will be questionable.  In order to 
improve on the accuracy, we should calculate the bound state energies of the finite 
well, taking into account that (i) it is finite and (ii) triangular. 

 

(d)  If we were to use a Quantum dot, the spread in laser wavelengths would be much 
smaller – it would be closer to monochromatic.  Also, the threshold current would be 
lower. 

 

Examiner’s note – quite a few students mixed up a quantum dot with a. single-electron 

transistor 

 

 

 

 

 

 

 

 

5.   

(a). The answer should include a sketch of how conductance should drop with size, and will 

scale with area as long as the cross-sectional dimensions are larger than the mean free path.  

For smaller dimensions, the conductance will start to drop more rapidly due to surface and 

grain-boundary scattering (answer should mention link between thickness of a film and mean 

grain size).  Then, as dimensions approach ~ 5 nm, quantisation of conductance should start 

to become apparent.  The point about room temperature is related to the Kubo gap, i.e. when 

the spacing between the ground state and first excited state is greater than kBT.  By thinking 

of a wire as having hard walls  - i.e. electrons are essentially in a potential well of height  and 

width D, where  and D are the work function of the metal and the diameter of the wire, 

respectively.  We can make the approximation that the first level is well below  and can 

therefore use the energy spectrum for the infinite potential well.  This gives a Kubo gap of : 

 



𝐸2 − 𝐸1 = 3
ℎ2

8𝑚𝐷2
 

 

For this to be equal to kBT, we find that  

 

𝐷 =
ℎ

2
√

3

2𝑚𝑘𝐵𝑇
= 0.66 𝑛𝑚 

 

(b). Answer should focus on 2DEG and how one would add contacts.  The key points are the 

high mobility is achieved through injection of charge without doping, and that there needs to 

be a spacer layer to prevent scattering from the dopants in the adjacent layers.  Mention 

Coulomb drag.  Concept of hot electrons should be introduced and then there should be a 

sketch of a device where a potential step down is added, but pointing out that the hot region 

is only approx. 1 mean free path long.   

 

(c)  The answer should point out that the E-k relationship is linear rather than parabolic, 

which is consistent with relativistic but massless particles, suggesting they will travel 

ballistically.  The lack of a band gap limits the on/off ratio to be in the range 1-10, 

whereas a meaningful device should have a ratio in excess of 106.  This can be 

addressed by somehow inducing a band gap, either by using a nanoribbon, or by 

creating an asymmetry in a bilayer device. 

 

 

 

 

 

 


