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1. (a) Quantum mechanically, the state of a par8cle is described by its wave-func8on, ψ, 
with the following characteris8cs: 
Postulate 1:  
The state of a quantum par8cle at 8me t is described by a con8nuous, non-singular, 
complex wave-func8on ψ(r,t), which can be normalised so that the square of its 
modulus is equal to the probability density for the results of a posi8on 
measurement. 
Postulate 2:  
A dynamical variable is represented by a linear Hermi8an operator Â whose real 
eigenvalue spectrum is the set of all possible results of a measurement of that 
variable.  The eigenfunc8on corresponding to a par8cular eigenvalue a describes an 
eigenstate of the quantum system, on which a measurement of the variable 
represented by Â yields the value a with probability 1. 
 
A free par8cle propaga8ng along r can be described as ψ(r,t) = ei(k r -𝜔t),  
where ω = angular frequency (=2πf) and k = wavenumber (=2π/λ). 
          
 
(b)        
 
 
 
 
 
 
 
To every observable quan8ty is associated a corresponding operator. 
Given a state described by a wavefunc8on ψ(x), we can calculate the expecta8on 
value of any observable quan8ty in that state by using the corresponding operator: 
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(c)  Time-dependent Schrödinger equa8on: 

 
 
Wave equa8on:  
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The wave equa8on describes the propaga8on of classical waves (sound waves, light 
waves, …) while Schrödinger equa8on describes “quantum waves” or the 8me-
evolu8on of objects following quantum mechanical rules. 
The wave equa8on has a second 8me deriva8ve as opposed to Schrödinger equa8on 
that contains a first 8me deriva8ve only. Both have second 8me deriva8ves as a 
func8on of space. 
 
(d) The wave-func8on describing a par8cle must be a con8nuous func8on (postulate 
1): when we have several boundaries separa8ng different regions of space, the wave-
func8on will have a different form in each region, but these func8ons must match at 
the boundaries (this is linked to probability condi8ons). 
The first spa8al deriva8ves must also be con8nuous at the boundaries (this is linked 
to conserva8on of energy). 
Using these condi8ons, we can solve for the unknowns in the wave-func8on which 
we get from solving Schrödinger equa8on.  Then we should normalise the wave-
func8on. 
When going across an interface with different effec8ve masses, then the first spa8al 
deriva8ves divided by the mass must also be con8nuous at the boundaries – 
“BenDaniel-Duke boundary condi8ons” (this is linked to current con8nuity). 
 
(e) In the quantum mechanical descrip8on, the electron has a non-zero probability of 
tunnelling through the barrier. The electronic wave will experience an exponen8al 
decay and, if the barrier is thin enough such that the wave intensity is non-zero at 
the second edge of the poten8al, the wave will propagate on the other side of the 
barrier.  
 
 
 
 
 
 
 
 
 
 
 
Classically, we would expect zero probability of passing through (because the  
electron does not have enough energy to overcome the barrier).   
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2. (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) GaAs bandgap = 1.424 eV 
l = 850 nm corresponds to 1.46 eV 
[(1.46-1.424)/2] eV = 0.018 eV  -> electron (and hole, given the assump8ons) 
confining poten8al 
 
The infinite well approxima8on is valid when the bound states are deeply confined in 
the well, poten8al well height >> than confinement energy.  
Here (1.92 - 1.424 = 0.5 eV), hence 0.5/2 = 0.25eV >> 0.018 eV 
 
(c) E = h2 n2/(8mL2) = 0.018 eV for n=1. 
Plugging in the numbers, L = 4.6nm 

 
(d) Confining poten8al depth = [(1.92-1.424)/2] eV = 0.248 eV 
For n = 4 E = 0.288 eV, for n = 3, E = 0.162 eV, for n = 2, E = 0.072 eV -> 3 bound states 
 
(e) 

 
 

  
 
 
 
 
 
 
 
 

The wavefunc8on distribu8ons are related to the probability of finding an electron 
within the quantum well, probability given by their modulus squared.  
They have alterna8ng symmetry, like confined waves. 
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             (f) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If E applied in the opposite orienta8on, the bands will bend in the opposite direc8on. 
 
(g) The confined energy states are brought closer together, therefore the energy 
separa8on is smaller. This results in a red-shin of the laser emission wavelength. 

 
 

3. (a) The phonons are collec8ve oscilla8ons of the atoms in a laoce. The confinement 
poten8al can be described as parabolic and the system can be described as an 
harmonic oscillator. 
Their energy, under the stated approxima8ons, is given by: 
En = (n + ½) ћω 

 
(b) n = 10 THz 
kBT = thermal energy = (1.38 10−23 J K-1) * T 
E2 = 2.5 h 10 THz = 2.5 6.63 10-21 J = 16.4 10-21 J = 1.64 10-20 J 
T = (1.64 10-20 J)/(1.38 10-23 J K-1) = 1190 K 
 
(c) Phonons can be responsible for electron scavering, thus reducing conduc8vity. 
 
(d) Phonons are responsible for the transi8ons between the top of the valence band 
to the bovom of the conduc8on band: they provide the momentum (not available 
from photons) that allows electrons to reach the conduc8on band minimum that, in 
indirect semiconductors, is not ver8cally aligned with the valence band maximum. 
 
(e) E0 = (½) ћω 
Zero-Point Energy: it means that, according to quantum mechanics, an harmonic 
oscillator can never be completely at rest, because then we would know its 
momentum (zero) and posi8on precisely, which goes against Heisenberg’s 
uncertainty principle.  It means that even at absolute zero, the atoms in a material 
will s8ll be moving around their equilibrium posi8on. 
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4. (a) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

(b) Resolu8on of the op8cal microscope will be limited by diffrac8on, typically about 
l/2, so using blue light, the resolu8on would be around 200nm at best. 
 
(c) Scanning Electron Microscopes use a beam of focused electrons that are 
accelerated onto the target with kV fields. The wavelength associate with the 
electrons is much smaller than visible-light wavelength, therefore higher resolu8ons 
are achieved, down to 1 nm. 
 
 
(d) C = 10 aF  
Charging energy = Q2/(2C) = (2.6 10-38 s2 A2)/(20 10-18 kg−1	m−2	s4	A2) = 1.3 10-21 J 
 
 
(e)  
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The single electron charging plateaux will only be visible when the thermal energy is 
lower than the charging energy. This generally occurs for 10K. Some oscilla8ons are 
s8ll visible at 100K, while at 300K most of the effect will be “washed out” and the 
charging steps will not be clearly visible anymore. 
 
(f) Single electron transistors can be used as charge sensor (single electron control), 
as spin-polarised current sources, as qubits for quantum computers (using the two 
spin states). 

 


