1. (a) Quantum mechanically, the state of a particle is described by its wave-function, ¢,
with the following characteristics:
Postulate 1:
The state of a quantum particle at time t is described by a continuous, non-singular,
complex wave-function (r,t), which can be normalised so that the square of its
modulus is equal to the probability density for the results of a position
measurement.
Postulate 2:
A dynamical variable is represented by a linear Hermitian operator A whose real
eigenvalue spectrum is the set of all possible results of a measurement of that
variable. The eigenfunction corresponding to a particular eigenvalue a describes an
eigenstate of the quantum system, on which a measurement of the variable
represented by A yields the value a with probability 1.

A free particle propagating along r can be described as (r,t) = eikr-b,
where w = angular frequency (=2ntf) and k = wavenumber (=2mt/A).

(b)  Energy operator, E= ih%

Momentum operator, p = —ih—
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To every observable quantity is associated a corresponding operator.
Given a state described by a wavefunction i(x), we can calculate the expectation
value of any observable quantity in that state by using the corresponding operator:
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(c) Time-dependent Schrédinger equation:
_h_23_2 (r,t))y+V(irw(r,t) = ihi (r,t)
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Wave equation:
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The wave equation describes the propagation of classical waves (sound waves, light
waves, ...) while Schrédinger equation describes “quantum waves” or the time-
evolution of objects following quantum mechanical rules.

The wave equation has a second time derivative as opposed to Schrodinger equation
that contains a first time derivative only. Both have second time derivatives as a
function of space.

(d) The wave-function describing a particle must be a continuous function (postulate
1): when we have several boundaries separating different regions of space, the wave-
function will have a different form in each region, but these functions must match at
the boundaries (this is linked to probability conditions).

The first spatial derivatives must also be continuous at the boundaries (this is linked
to conservation of energy).

Using these conditions, we can solve for the unknowns in the wave-function which
we get from solving Schrédinger equation. Then we should normalise the wave-
function.

When going across an interface with different effective masses, then the first spatial
derivatives divided by the mass must also be continuous at the boundaries —
“BenDaniel-Duke boundary conditions” (this is linked to current continuity).

(e) In the quantum mechanical description, the electron has a non-zero probability of
tunnelling through the barrier. The electronic wave will experience an exponential
decay and, if the barrier is thin enough such that the wave intensity is non-zero at
the second edge of the potential, the wave will propagate on the other side of the
barrier.
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Classically, we would expect zero probability of passing through (because the
electron does not have enough energy to overcome the barrier).
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(b) GaAs bandgap = 1.424 eV

A =850 nm corresponds to 1.46 eV

[(1.46-1.424)/2] eV = 0.018 eV -> electron (and hole, given the assumptions)
confining potential

The infinite well approximation is valid when the bound states are deeply confined in
the well, potential well height >> than confinement energy.

Here (1.92 - 1.424 = 0.5 eV), hence 0.5/2 = 0.25eV >> 0.018 eV

(c) E=h?n?/(8mL?) =0.018 eV for n=1.
Plugging in the numbers, L =4.6nm

(d) Confining potential depth = [(1.92-1.424)/2] eV = 0.248 eV
Forn=4E=0.288¢eV,forn=3,E=0.162 eV, forn=2, E=0.072 eV -> 3 bound states
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The wavefunction distributions are related to the probability of finding an electron
within the quantum well, probability given by their modulus squared.
They have alternating symmetry, like confined waves.
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If E applied in the opposite orientation, the bands will bend in the opposite direction.

(g) The confined energy states are brought closer together, therefore the energy
separation is smaller. This results in a red-shift of the laser emission wavelength.

(a) The phonons are collective oscillations of the atoms in a lattice. The confinement
potential can be described as parabolic and the system can be described as an
harmonic oscillator.

Their energy, under the stated approximations, is given by:

En=(n+%)hw

(b) v =10 THz

keT = thermal energy = (1.38 10723 J K1) * T
E;=2.5h10THz=2.56.63102')=16.410%')=1.64102%°]
T=(1.64 102°))/(1.38 102 J K1) = 1190 K

(c) Phonons can be responsible for electron scattering, thus reducing conductivity.

(d) Phonons are responsible for the transitions between the top of the valence band
to the bottom of the conduction band: they provide the momentum (not available
from photons) that allows electrons to reach the conduction band minimum that, in
indirect semiconductors, is not vertically aligned with the valence band maximum.

(e) Eo = (1/2) hw

Zero-Point Energy: it means that, according to quantum mechanics, an harmonic
oscillator can never be completely at rest, because then we would know its
momentum (zero) and position precisely, which goes against Heisenberg’s
uncertainty principle. It means that even at absolute zero, the atoms in a material
will still be moving around their equilibrium position.



(a) left capacitor right
electrode electrode

1@

V Gate

(b) Resolution of the optical microscope will be limited by diffraction, typically about
A/2, so using blue light, the resolution would be around 200nm at best.

(c) Scanning Electron Microscopes use a beam of focused electrons that are
accelerated onto the target with kV fields. The wavelength associate with the
electrons is much smaller than visible-light wavelength, therefore higher resolutions
are achieved, down to 1 nm.

(d)Cc=10aF
Charging energy = Q%/(2C) = (2.6 1038 s2 A%2)/(20 108 kg m2 s* A%2) = 1.3 1021}

(e)
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The single electron charging plateaux will only be visible when the thermal energy is
lower than the charging energy. This generally occurs for 10K. Some oscillations are
still visible at 100K, while at 300K most of the effect will be “washed out” and the
charging steps will not be clearly visible anymore.

(f) Single electron transistors can be used as charge sensor (single electron control),
as spin-polarised current sources, as qubits for quantum computers (using the two
spin states).



