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1.(a) The need for quantum mechanics arose from the turn of the 20th century, 

necessitated by a number of experimental irregularities.  For instance, on the basis of  

the understanding of nature at the time, the very existence of atoms was puzzling.  It was known 

that atoms consisted of negatively charged electrons orbiting positively charged nuclei.  From 

conventional electromagnetism, we know that any accelerating charged particle will emit 

electromagnetic radiation and hence lose energy.  Therefore, if an electron orbits a nucleus, by 

the very fact that it is moving around the nucleus, it is accelerating, and we would expect it to 

radiate, lose energy and eventually spiral in towards the nucleus.  This clearly does not happen, 

so a theory was needed to explain why not, as Maxwell’s theory of electromagnetism had very 

successfully been able to explain very many other phenomena and was widely accepted.   

Another problem was the phenomenon of photoemission – the effect whereby 

 incident electromagnetic radiation causes electrons to be ejected from metal surfaces.  It was 

observed that electrons are only ejected once the frequency of the light reaches some threshold 

value, their energy scales linearly with frequency and the number of electrons ejected increases 

as the light intensity increases.  This is at odds with classical electromagnetism which predicts 

that (i) the frequency should not make any difference whatsoever and (ii) the energy of the 

ejected electrons should only depend on the intensity of the light (Energy per unit volume of 

light is ½ oE2, and intensity is energy per unit area).  There is no reason classically for the 

number of electrons ejected to depend on intensity.  The explanation for this effect within the 

framework of quantum mechanics is that light consists not only of waves, but also of particles 

called photons, which contain distinct amounts of energy depending linearly of frequency.  The 

proportionality constant is Planck’s constant, h.  Electrons are bound to the metal by an energy 

called the work function and until the frequency of light is high enough, individual photons 

don’t have enough energy to free them.  Above this threshold frequency, electrons are emitted, 

and the excess energy is taken up as the electron’s kinetic energy.  The number of electrons 

ejected then scales as the number of protons, which depends on the intensity.  Another turning 

point was the observation of electron diffraction – clear evidence that particles have a wave-

like character.   

 Other experimental evidence was for instance the inability of Physics to explain (i) why 

some materials are conductors and others are insulators, (ii) the origin of electrical resistance, 

(iii) the observed dependence of specific heat capacity on temperature and (iv) the origin of 

discrete spectra from heated materials, e.g. the sun.   

 

(b) Wavepackets are used to represent localised entities such as particles.  To construct a 

wavepacket, add two sinewaves, E = Eo[cos(t - kx) + cos(2t – k2x)].  This can be rewritten 

as E = 2Eosin(+t – k+x)cos(w-t – k-x), where 𝜔±= ( ± 2)/2 and 𝑘± = (k ± k2)/2.  This 

represents a sinewave of frequency + which has its amplitude modulated at the frequency - 



to produce beats.  This therefore exhibits localised areas of enhanced field strength which may 

be used to represent particles.  These localised areas that we call wavepackets propagate 

through space at the group velocity d/dk = c (the speed of light).  In the absence of dispersion, 

these wavepackets will propagate without changing shape, but if there is dispersion, they will 

spread out.   

 The phase velocity is /k = 2/k2 = c.  The group velocity can in principle vary, but up 

to a maximum limit of c.  We could refine/modify the wavepacket by summing together an 

infinite number of sinwaves with e.g. a Gaussian spectral function.  This will increase the 

degree of localisation. 

 

(c)  Construct a wavepacket as follows: 

 

𝐸 = 𝐸0 ∫ 𝑓(𝑘)𝑒−𝑖(𝑘𝑥− 𝜔𝑡)𝑑𝑘
∞

−∞
    (1) 

 

Where f (k) is the spectral function, which is a Guassian of width  :  

 

 

𝑓(𝑘) =
1

√2𝜋𝛿
𝑒

−
𝑘2

2𝛿2 

 

 

Therefore, we can write (1) as : 

 

𝐸 = 𝐸0

1

√2𝜋𝛿
∫ 𝑒

−
𝑘2

2𝛿2𝑒−𝑖𝑘(𝑥− 𝑐𝑡)𝑑𝑘

∞

−∞

 

 

Where we have used the relationship that  = ck. 

We tend to use Gaussian spectral functions as they provide the best agreement with experiment. 

This is known as a Gaussian integral and the easiest way to solve is to change the variables as 

follows: 

 Let k’ = k – ib/2a where a = 1/2 2 and b = x – ct.  This gives us: 

 

𝐸 = 𝐸0

1

√2𝜋𝛿
𝑒−

𝑏2

4𝑎 ∫ 𝑒−𝑎𝑘′2
𝑑𝑘′

∞

−∞

 

 

This integral is known to be equal to  √𝜋
𝑎⁄  , with the net result therefore being that: 

 

𝐸 = 𝐸0√𝛿 𝑒−
𝛿2

2
(𝑥 −𝑐𝑡)2

   

𝐸 = 𝐸0√𝛿 𝑒−
𝛿2

2
(𝑥 −𝑐𝑡)2

cos (𝜔𝑡 − 𝑘𝑥) 

 



Heisenberg’s uncertainty principle states that ∆𝑥∆𝑝 ≥  
ℏ

2
 .  To see where this comes from , 

consider that the spectral function has a width (in k - space) of ∆𝑘 = .  By inspection, the 

solution for E(x) has a spatial width  ∆𝑥 = 1/.  Therefore, by inspection, ∆𝑥∆𝑘 =  1 .  Given 

that momentum, p = ℏk, it follows that ∆𝑥∆𝑝 =  ℏ .  This is just a lower bound on the 

uncertainty, hence the inequality in Heisenberg’s uncertainty principle.  What this all means 

physically is that we can never simultaneously know absolutely both the position and 

momentum of a particle, and the more accurately we know one, the less we can know about 

the other. 

 

Principal Assessor’s comments: 

 

This question was reasonably well answered.  All candidates were able to answer the first part which 
was a description of two areas where quantum theory was needed to explain an anomalous result.  Some 

students gave very brief answers whereas others recognized that being worth 30% of the marks, it 

warranted a more fulsome answer, as it was somewhat open-ended.  The rest was generally well 

answered and most students demonstrated an understanding of the difference between group and phase 

velocity, although only a few students were then able to rationally explain the origin of the uncertainty 
principle. 

 

 

2. (a)  

 

𝐸𝑛 =  (𝑛 + 1
2⁄ )ℏ𝜔𝑐 .   

 

To answer the question, in principle only this equation needs to be written down – the 

derivation is not necessary.  The trick is in applying it correctly.  By definition, 𝜔𝑐 =  √
𝑘

𝑚
 , so 

we need to know the mass of the atoms.  We know that k = 520 N/m and m = 10-26 kg, so we 

can determine that 𝜔𝑐 =  √
520

10−26  = 228x1012 rad/s.  Therefore, the spectrum of energy levels 

is (𝑛 + 1
2⁄ ) 1.05 × 10−34 × 228 × 1012

1.6 × 10−19⁄  eV.   

This reduces down to 149.6(𝑛 + 1
2⁄ ) meV. 

 

(b) 

Therefore, only discrete values of energy are allowed, which is a characteristic of all quantum 

systems and arises due to the boundary conditions we are imposing.  If we visualise the 

potential within a QSHO, it is a parabolic well so only those quantum states whose 

corresponding wavelength is a half-integer divisor of the well extent are allowed.  The main 

disparity between quantum and classical is that they both seem to predict the opposite 

behaviour – the ground state wavefunction has its maximum at the centre of the well, whereas 

a classical oscillator spends most time at the extremes (where it is travelling slowest).  

However, higher energy levels in the QSHO have probability densities that approach this, and 

eventually the quantum and classical models converge.  This is commonly seen in quantum 



systems – apparently very different behaviour for low energy levels and agreement with 

classical expectations for highly excited states – this is known as the correspondence principle.   

The consequence of the ground state having nonzero energy is that according to quantum 

mechanics, no system is ever fully at rest – there is always some vibration.  This is essentially 

another way of demonstrating the uncertainty principle. 

 

 

 

 

 

 

 

 

(c) The probability density of the ground state and the first two excited states are shown below: 

 

 

 

 

 

 

 

 

 

 

 

Where L is the classical extent of the oscillating system (e.g. if it is a mass on a spring, it is the 

initial amount by which the spring is extended or compressed before being released and 

allowed to oscillate) and the dotted curve is the classically expected probability (determined 

by plotting 1/velocity).   

 

Principal Assessor’s comments: 

 

This question was very well answered.  Some students were a little uncertain about the level of detail 
required as the appropriate formula was in the formula sheet, but some went and derived it anyway.  

The key point was that all students recognized the relationship between the classical and quantum 

harmonic oscillator, and most obtained the correct energy levels.  Very few students were able to 

succinctly explain why energy levels are quantized and thought it was to do with electron wavelengths, 

rather than recognizing it is a direct consequence of the boundary conditions.  Most got the point about 
classical and quantum mechanics converging for highly excited states.  
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3. (a) Wavefunctions represent the probability distribution of the quantum particles to  

which they pertain.  If we have a particle described by the wavefunction (r,t), then 

| (r,t)|2 is the probability of finding the particle at position r at time t.  The rules for 

determining (r,t) in boundary-value problems are that (r,t) and its first derivative are 

continuous at all boundaries.  Physically this means that the wavefunctions are single-

valued, i.e. there is only one value for the probability of finding the particle at any point in 

space.  Also, the energy of a quantum particle is proportional to 
𝑑2𝜓

𝑑𝑟2 , so if there were any 

discontinuities, that would correspond to infinite energy which is unphysical.   

(b) We expect that as the electrons have more energy than the cylinder, they will have sufficient 

energy to pass through.  On the basis of classical mechanics, we would expect that they will 

simply slow down, with a net kinetic energy before of 50 eV and inside of 10 eV, hence the 

slower motion.  However, quantum mechanically, given that the electron bean is described by 

waves, it will partly reflect as it experiences a discontinuity. Schrödinger’s equation can be 

written in the regions before (region I) and in the cylinder (region II) as  

 

−
ℏ2

2𝑚

𝑑2𝜓1

𝑑𝑥2
= 𝐸𝜓1 

And  

 

−
ℏ2

2𝑚

𝑑2𝜓𝐼𝐼

𝑑𝑥2
+ 𝑉𝜓𝐼𝐼 = 𝐸𝜓𝐼𝐼 

 

 

Where E = 50 eV & V = 40 eV. 

 

The solutions to these equations are: 

 

𝜓𝐼(𝑥) =  𝐴1𝑒𝑖𝑘1𝑥  +  𝐵1𝑒−𝑖𝑘1𝑥 

 

 

And  

𝜓𝐼𝐼(𝑥) =  𝐴2𝑒−𝑖𝑘2𝑥 

 

Where 𝑘1 =  √
2𝑚𝐸

ℏ
   and 𝑘2 =  √

2𝑚(𝐸−𝑉)

ℏ
 

 

 

Invoking our boundary conditions, i.e. that the wavefunctions and their first derivatives are 

continuous at the boundary (x = 0), we determine the following relationships: 

 

𝐴1 + 𝐵1 =  𝐴2 

 



𝑖𝑘1𝐴1 −  𝑖𝑘1𝐵1 =  −𝑖𝑘2𝐴2 

 

From which we have that 
𝐵1

𝐴1
=

(𝑘1−𝑘2)

(𝑘2+𝑘1)
, from which we determine that the reflection probability, 

R = |
(𝑘1−𝑘2)

(𝑘2+𝑘1)
|

2
 = 0.144 

 

 

(c) Now that the cylinder is finite in extent, there is an additional boundary, at a position we 

are calling x = L, where L = 1 nm.  The extra boundary arises as we now have the regions 

before and after the cylinder (regions I and III, respectively) as well as inside the cylinder 

(region II). 

The solutions to Schrödinger’s equation in these regions are: 

 

 

𝜓𝐼(𝑥) =  𝐴1𝑒𝑖𝑘1𝑥  +  𝐵1𝑒−𝑖𝑘1𝑥 

 

𝜓𝐼𝐼(𝑥) =  𝐴2𝑒𝑖𝑘2𝑥  +  𝐵2𝑒−𝑖𝑘2𝑥 

And  

𝜓𝐼𝐼𝐼(𝑥) =  𝐴3𝑒−𝑖𝑘1𝑥 

 

Where 𝑘1 =  √
2𝑚𝐸

ℏ
   and 𝑘2 =  √

2𝑚(𝐸−𝑉)

ℏ
 

 

 

Invoking our boundary conditions as before, at the first boundary where x = 0, we find that  

 

 

𝐴1 + 𝐵1 =  𝐴2 + 𝐵2 

 

𝑖𝑘1𝐴1 −  𝑖𝑘1𝐵1 =  𝑖𝑘2𝐴2 −𝑖𝑘2𝐵2 

 

From this, we can say that  

 

 
𝐵1

𝐴1
=

𝐴2(𝑘1−𝑘2) + 𝐵2(𝑘1+ 𝑘2)

𝐴2(𝑘1+ 𝑘2) + 𝐵2(𝑘1− 𝑘2)
 

 

 

At the right boundary (where x = L), we find that 

 

𝐴2 =  
𝐴3𝑒𝑖𝑘1𝐿[𝑘2 + 𝑘1]𝑒−𝑖𝑘2𝐿

2𝑘2
 

 

 



And  

𝐵2 =  
𝐴3𝑒𝑖𝑘1𝐿[𝑘2 −  𝑘1]𝑒𝑖𝑘2𝐿

2𝑘2
 

 

 

Substituting into the above expression for B1/A1, we arrive at the following expression: 

 

𝑅 =  |
𝐵1

𝐴1
|

2

=  
(𝑘2

2 − 𝑘1
2)𝑆𝑖𝑛ℎ(𝑘2𝐿)

2𝑘1𝑘2𝐶𝑜𝑠ℎ(𝑘2𝐿) − (𝑘2
2 + 𝑘1

2)𝑆𝑖𝑛ℎ(𝑘2𝐿)
 

 

 

 

For our particular situation, R = 0.1 

 

 

Principal Assessor’s comments: 

 

All students managed to explain what wave-functions are and what they represent, and most were able 

to explain their properties in the context of boundary-value problems.  A few were a bit brief and stated 

the boundary conditions rather than explaining what they mean, which is what the question was asking 
for.  The next bit, looking at quantum scattering from a potential step was straightforward, but a few 

students did not answer the question asked – we were looking for the reflection probability, whereas 
some gave the transmission probability.  A few also mixed up reflection coefficient and reflection 

probability.  The last part of the question, which considered a potential step rather than a barrier, was 

less well answered, and a few students simply stated a formula they had clearly memorized, and which 
was the incorrect one anyway as it was only valid for the case of tunneling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. (a) The potential is shown below.  In regions I & III, the potential is infinite, which  

means there is no probability of fining the particle there so it must be confined within region 

II.  Therefore, the problem reduces down to simply solving Schrödinger’s equation in 

region II, which is of the form: 

 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
= 𝐸𝜓 

 

 

The simplest solution to this equation is: 

𝜓(𝑥) =  𝐴𝑒𝑖𝑘1𝑥  +  𝐵𝑒−𝑖𝑘1𝑥 

 

Where 𝑘 =  √
2𝑚𝐸

ℏ
    

 

 

As the wavefunction must be zero outside the well, it must also be zero at the boundaries for 

continuity.   

Matching at the left side (x = 0):  A + B = 0 ⟹ 𝐴 =  −𝐵 

 

i.e. we can rewrite the wavefunction as  

 

𝜓(𝑥) =  𝐴𝑒𝑖𝑘1𝑥 −  𝐴𝑒−𝑖𝑘1𝑥 = 𝐶𝑠𝑖𝑛(𝑘𝑥) 

 

Matching at the right side, 𝐶𝑠𝑖𝑛(𝑘𝐿) = 0 ⟹ 𝑘 =
𝑛𝜋

𝐿
,  where n = 1, 2...... 

 

Therefore, the wavefunction for an electron in an infinitely deep potential well is of the form 

 

𝜓(𝑥) =  𝐶𝑠𝑖𝑛 (
𝑛𝜋

𝐿
𝑥) 

 

 

To find the value of C, we need to normalise, i.e.  

   

∫ |𝜓(𝑥)|2
𝐿

0

𝑑𝑥 = 1 ⟹ ∫ 𝐶2𝑠𝑖𝑛2 (
𝑛𝜋

𝐿
𝑥)

𝐿

0

𝑑𝑥 = 1  

 

Which gives us a value of 𝐶 =  √
2

𝐿
 

 

To determine the energy levels, remember that the energy of the electrons within the well is 

purely kinetic and is given by 𝐸 =  
1

2
𝑚𝑣2 =  

𝑝2

2𝑚
=  

ℏ2𝑘2

2𝑚
 

 



As k has quantised values as dictated by the boundary conditions above, the consequence of 

this is that the energy levels are also quantised.  Substituting for k into the expression for energy 

above, we find that: 

 

𝐸 =  
ℏ2 (

𝑛𝜋
𝐿 )

2

2𝑚
=  

ℎ2𝑛2

8𝑚𝐿2
 

 

 

 

To answer the question, all that is actually needed is to write the following: 

𝜓(𝑥) =  √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋

𝐿
𝑥) 

 

So, we can write the wavefunction as   

𝜓(𝑥) =  √
2

20×10−9 𝑠𝑖𝑛 (
𝑛𝜋

20×10−9 𝑥) = 104𝑠𝑖𝑛 (
𝑛𝜋

20×10−9 𝑥) = 104𝑠𝑖𝑛(0.157𝑛𝑥) where x is in nm.  

 

For the energies in eV, 𝐸 =
ℎ2𝑛2

8𝑚𝐿2 =  
(6.6×10−34)

2
𝑛2

8×0.1×9.1×10−31×(20×10−9)2 ×
1

1.6×10−19 = 9.3n2 meV 

 

(b)  Qantum wells are fabricated using what is known as band-gap engineering.  The technique 

used to fabricate them is generally MBE (molecular beam epitaxy).  The materials used are 

semiconductors, as they can be doped controllably to produce specific band profiles.  In infinite 

wells, wavefunctions exist only within the well, and there is zero probability of finding them 

outside the well.  In finite wells, there is a probability of locating the particle outside the well.  

This probability increases as (i) the energy levels (n) increase, (ii) the well-width decreases or 

(ii) the confining potential (the depth of the well) decreases.   

A finite well can be approximated as an infinite one if it is not too shallow, i.e. if the depth of 

the well is larger than the first bound state of the corresponding infinite well of the same width.   

A common example of a quantum well is a semiconductor laser.  These are typically 10-20 nm 

wide, and fabricated from direct band-gap materials such as GaAs and GaAlAs.  The depth of 

such wells tends to be in the range 0.1-0.3 eV.  For the semiconductor laser, the operation is 

based on transitions between electron states in the conduction band and same-symmetry hole 

states in the valence band.  The energy of these transitions is dictated by the bandgap plus the 

confinement energies of the corresponding states.  

 

 

(c)  Probability density for an electron in an infinitely deep well, ground state (n = 1) and first 

excited state (n = 2). 

 
n = 1 

n = 2 



 
 

Probability density for an electron in a finite depth well, ground state (n = 1) and first excited 

state (n = 2). 

 

 

 

 

  
 

 

For the infinite well, the wavefunctions are zero outside the well, whereas for a finite well, this 

is not the case.  As the well is made narrower or higher energy levels are looked at, the 

wavefunctions extend more into the region outside the well.  As we reduce the depth of a well, 

the energy levels also reduce.   

 

(d) The uncertainty principle tells us that the minimum product of the uncertainty of the 

momentum and position, Δ𝑥Δ𝑝 =  
ℏ

2
 .  If we assume that Δ𝑥= 2 nm, the width of the well, and 

the energy is 
Δ𝑝2

2𝑚
, we can determine that Δ𝑝 =  

ℏ

2Δ𝑥
 ⟹ 𝐸 =

ℏ2

8𝑚Δ𝑥2  .   

 

By comparison with the above, this energy is a factor of 2 smaller than the exact calculation.  

We could obtain a more accurate estimate by recognising that the uncertainty in position is in 

fact smaller than the size of the well, and if we use the correct forms for uncertainty of position 

and momentum, we recover the exact value of energy.   

 

 

n = 1 

n = 2 



Principal Assessor’s comments: 

 

This question was well-answered across the board.  Almost all students calculated the correct 

wave-function and most got the correct energy levels.  Given that the formula for the spectrum of energy 

levels was in the formula sheet, it highlighted that some students were a bit careless when applying it 
and obtained incorrect values.  The next part of the question on how quantum wells are created and a 

description of the use of a device incorporating one was well-answered.  It was quite open-ended, and 

some students went into a lot of detail, which was a pleasure to read through.  The next part, looking 
at the differences between finite and infinite quantum wells was answered well by all.  The last part of 

the question was somewhat inconsistently answered.  Some students applied the uncertainty principle 

appropriately and obtained sensible energy levels, whereas others were uncertain as to what to do.  

This turned out to be a more probing part of the question than anticipated. 

 

 

 

5. (a) Quantum supremacy is that point at which a quantum computer can solve problems  

that are beyond the capability of conventional devices/computers.  Answer should include a 

mention of different types of qubit, with particular reference to superconducting Josephson 

junctions as the most promising.   

 

(b) Answer should discuss some of the following: quantum computing can efficiently solve 

some hard problems that are intractable with conventional computers, a standard example is 

Shor’s efficient quantum algorithm for factoring, which is a hard problem studied by 

mathematicians for centuries and is also the foundation of security of standard RSA crypto-

system.  

-if a quantum computer is ever built, much of conventional cryptography will fall apart!  

-quantum mechanics can be used to make codes as well as breaking them. Indeed, quantum 

cryptography (the art of code-making), in principle, allows perfectly secure communication 

between two parties in the presence of a technologically arbitrarily advanced eavesdropper,  

-quantum mechanics has the potential to revolutionize both code- making and code-breaking,  

-quantum information processing also allows other novel types of information processing. For 

instance, in a process called ”quantum teleportation”, a quantum state is decomposed locally 

in one spatial location and remotely reconstructed in another location through the 

communication of a classical message and the prior sharing of some quantum resource called 

”entanglement”.  

What QIP cannot do 

There are tasks that even quantum information processing cannot do:  

• The first example is to compute a “non-computable function” defined in the standard Church-

Turing model.  



So, while quantum computing can speed up (sometimes dramatically) some computations, it 

can always be simulated by a classical computer—but perhaps with an exponential overhead 

in some resource—time or space or resolution.  

• A second example is a cryptographic task called quantum bit commitment.  

 

• A first major challenge of QIP is to discover new tasks where QIP gives a dramatic 

advantage. For instance, invent a useful new quantum algorithm. One important open 

problem is the graph isomorphism problem.  

• A second major challenge of QIP is to construct a large-scale quantum information 

processing in the real world. While writing equations on paper is easy, building a real 

large-scale quantum information processing is a major technological challenge that 

many groups in the world have been working very hard on.  

• A third major challenge of QIP is to solve some of the well-known open problems in 

the subject. An example is to find an efficient way to compute the various quantum 

channel capacities defined in the literature.  

• A fourth major challenge of QIP is to continue the quantization program and apply it 

to other subjects. If one takes the quantization program seriously, one would believe 

that it is meaningful to pick almost any scientific subject and ask if and how it can be 

combined with quantum mechanics. For instance, one can start with control theory and 

ask how quantum control theory can be formulated.  

• A fifth major challenge is to use QIP as a proof technique to tackle problems strictly in 

classical information theory. The power and limitation of such a proof technique 

deserves investigations.  

 

(c) 

• The theoretical developments concerning quantum complexity and quantum error 

correction have been accompanied by a burgeoning experimental effort to process 

coherent quantum information.  

• To build hardware for a quantum computer, we’ll need technology that enables us to 

manipulate qubits. The hardware will need to meet some stringent specifications:  

1. Storage: We’ll need to store qubits for a long time, long enough to complete an 

interesting computation.  

2. Isolation: The qubits must be well isolated from the environment, to minimize 

decoherence errors.  

3. Readout: We’ll need to measure the qubits efficiently and reliably.  

4. Gates: We’ll need to manipulate the quantum states of individual qubits, and to induce 

controlled interactions among qubits, so that we can perform quantum gates.  



5. Precision: The quantum gates should be implemented with high precision if the device 

is to perform reliably.  

 

Principal Assessor’s comments: 

 

This question was on a new part of the course on quantum computing and was the most open-

ended question on the paper, also being largely descriptive and explanation – based.  It was therefore 
very surprising that only two candidates attempted it.  Both answers were reasonably good, of a roughly 

II.1 standard and demonstrated a good understanding of the core concepts.  I suspect students stayed 
with the more tried and tested parts of the course for examination, and moving forward, I will ensure 

more emphasis is given to this area.   

 

 

 

 


