## 4C2 - Designing with Composites

## Cribs

1. (a) A laminate is made up of a stacked assembly of unidirectional plies, each having its fibre axis lying at a specified angle to a reference direction. They are used in preference to unidirectional plies because they are more isotropic.

A balanced laminate $\left(A_{16}=A_{26}=0\right)$ is one in which the laminate as a whole exhibits no tensile-shear interactions i.e. the tension-shear interaction terms contributed by the individual laminae all cancel out each other (a tensile stress induces no shear straining and a shear stress induces no normal strain).
A symmetric laminate is one possessing a mirror plane lying in the plane of the laminate i.e. the stacking sequence in the top half reflects that in the bottom half. A symmetric laminate does not exhibit bending-stretching coupling (the coupling stiffness $[B]=0$ ), i.e. in-plane loading will not generate any out-of-plane distortion and vice versa.
(b)
$E_{1}=\left[f E_{\mathrm{f}}+(1-f) E_{\mathrm{m}}\right]=0.5 \times 76+0.5 \times 3=39.5 \mathrm{GPa}$
$E_{2}=\left[\frac{f}{E_{\mathrm{f}}}+\frac{(1-f)}{E_{\mathrm{m}}}\right]^{-1}=\left[\frac{0.5}{76}+\frac{0.5}{3}\right]^{-1} \approx 5.77 \mathrm{GPa}$
$\frac{v_{12}}{E_{1}}=\frac{v_{21}}{E_{2}} \Rightarrow v_{21} \approx 0.05$
Calculate $[Q]$ in principal material axes $(1,2)$
$Q_{11}=\frac{E_{1}}{1-v_{12} v_{21}}=\frac{39.5}{1-0.3 \times 0.05}=40.10 \mathrm{GPa}$
$Q_{22}=\frac{E_{2}}{1-v_{12} v_{21}}=\frac{5.77}{1-0.3 \times 0.05}=5.86 \mathrm{GPa}$
$Q_{12}=\frac{v_{12} E_{2}}{1-v_{12} v_{21}}=\frac{0.3 \times 5.77}{1-0.3 \times 0.05}=1.76 \mathrm{GPa}$
$Q_{66}=G_{12}=2.4 \mathrm{GPa} \quad Q_{16}=Q_{26}=0$
$[Q]=\left[\begin{array}{ccc}40.10 & 1.76 & 0 \\ 1.76 & 5.86 & 0 \\ 0 & 0 & 2.4\end{array}\right] \mathrm{GPa}$
Calculate the transformed stiffness matrix $[\bar{Q}]$ in the global $\mathrm{x}-\mathrm{y}$ axes.
The transformed lamina stiffness matrix $[\bar{Q}]$ for the $0^{\circ}$ plies is given by
$[Q]_{0^{\circ}}=\left[\begin{array}{ccc}40.10 & 1.76 & 0 \\ 1.76 & 5.86 & 0 \\ 0 & 0 & 2.4\end{array}\right] \mathrm{GPa}$

The transformed stiffness matrix for the $+45^{\circ}$ plies is given by

$$
\begin{aligned}
& \left(\bar{Q}_{11}\right)_{45^{\circ}}=Q_{11} c^{4}+Q_{22} s^{4}+2\left(Q_{12}+2 Q_{66}\right) s^{2} c^{2}=14.77 \mathrm{GPa} \\
& \left(\bar{Q}_{12}\right)_{45^{\circ}}=\left(Q_{11}+Q_{22}-4 Q_{66}\right) s^{2} c^{2}+Q_{12}\left(c^{4}+s^{4}\right)=9.97 \mathrm{GPa} \\
& \left(\bar{Q}_{22}\right)_{45^{\circ}}=Q_{11} s^{4}+Q_{22} c^{4}+2\left(Q_{12}+2 Q_{66}\right) s^{2} c^{2}=14.77 \mathrm{GPa} \\
& \left(\bar{Q}_{16}\right)_{45^{\circ}}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) c^{3} s-\left(Q_{22}-Q_{12}-2 Q_{66}\right) c s^{3}=8.56 \mathrm{GPa} \\
& \left(\bar{Q}_{26}\right)_{45^{\circ}}=\left(Q_{11}-Q_{12}-2 Q_{66}\right) c s^{3}-\left(Q_{22}-Q_{12}-2 Q_{66}\right) c^{3} s=8.56 \mathrm{GPa} \\
& \left(\bar{Q}_{66}\right)_{45^{\circ}}=\left(Q_{11}+Q_{22}-2 Q_{12}-2 Q_{66}\right) s^{2} c^{2}+Q_{66}\left(s^{4}+c^{4}\right)=10.61 \mathrm{GPa}
\end{aligned}
$$

$$
\text { where } c=\cos 45, s=\sin 45
$$

$$
[\bar{Q}]_{45^{\circ}}=\left[\begin{array}{ccc}
14.77 & 9.97 & 8.56 \\
9.97 & 14.77 & 8.56 \\
8.56 & 8.56 & 10.61
\end{array}\right] \mathrm{GPa}
$$

The transformed lamina stiffness matrix $[\bar{Q}]$ for the $-45^{\circ}$ plies is given by

$$
[\bar{Q}]_{-45^{\circ}}=\left[\begin{array}{ccc}
14.77 & 9.97 & -8.56 \\
9.97 & 14.77 & -8.56 \\
-8.56 & -8.56 & 10.61
\end{array}\right] \mathrm{GPa}
$$

The only difference between the stiffness matrices for the two plies is that the shear coupling terms (terms with subscripts 16 and 26) for the $-45^{\circ}$ ply have the opposite sign from the corresponding terms for the $+45^{\circ}$ ply.

Set $t\left(=0.5 \times 10^{-3} \mathrm{~m}\right)$ for lamina thickness
$A_{11}=\left\lfloor\left(\bar{Q}_{11}\right)_{+45}+\left(\bar{Q}_{11}\right)_{-45}+2\left(\bar{Q}_{11}\right)_{0}\right\rfloor \cdot 2 t=109.74 \mathrm{MN} \mathrm{m}^{-1}$
$A_{12}=\left[\left(\bar{Q}_{12}\right)_{+45}+\left(\bar{Q}_{12}\right)_{-45}+2\left(\bar{Q}_{12}\right)_{0}\right] \cdot 2 t=23.45 \mathrm{MN} \mathrm{m}^{-1}$
$A_{22}=\left[\left(\bar{Q}_{22}\right)_{+45}+\left(\bar{Q}_{22}\right)_{-45}+2\left(\bar{Q}_{22}\right)_{0}\right] \cdot 2 t=41.26 \mathrm{MN} \mathrm{m}^{-1}$
$A_{16}=\left[\left(\bar{Q}_{16}\right)_{+45}+\left(\bar{Q}_{16}\right)_{-45}+2\left(\bar{Q}_{26}\right)_{0}\right] \cdot 2 t=0$
$A_{26}=\left[\left(\bar{Q}_{26}\right)_{+45}+\left(\bar{Q}_{26}\right)_{-45}+2\left(\bar{Q}_{26}\right)_{0}\right] \cdot 2 t=0$
$A_{66}=\left[\left(\bar{Q}_{66}\right)_{+45}+\left(\bar{Q}_{66}\right)_{-45}+2\left(\bar{Q}_{66}\right)_{0}\right] \cdot 2 t=26.02 \mathrm{MN} \mathrm{m}^{-1}$
$[A]=\left[\begin{array}{ccc}109.74 & 23.45 & 0 \\ 23.45 & 41.26 & 0 \\ 0 & 0 & 26.02\end{array}\right] \mathrm{MN} \mathrm{m}^{-1}$
Since $A_{16}=A_{26}=0$, the laminate is balanced.
(c) (i)
$\left(\begin{array}{c}N_{\mathrm{x}} \\ N_{\mathrm{y}} \\ N_{\mathrm{xy}}\end{array}\right)=[A]\left(\begin{array}{c}\varepsilon_{\mathrm{x}} \\ \varepsilon_{\mathrm{y}} \\ \gamma_{\mathrm{xy}}\end{array}\right)$
$\left(\begin{array}{c}N_{\mathrm{x}} \\ N_{\mathrm{y}} \\ N_{\mathrm{xy}}\end{array}\right)=\left[\begin{array}{ccc}A_{11} & A_{12} & 0 \\ A_{12} & A_{22} & 0 \\ 0 & 0 & A_{66}\end{array}\right]\left(\begin{array}{c}\varepsilon_{\mathrm{x}} \\ \varepsilon_{\mathrm{y}} \\ \gamma_{\mathrm{xy}}\end{array}\right)$
$N_{y}=0=A_{12} \varepsilon_{x}+A_{22} \varepsilon_{y} \quad \therefore \varepsilon_{y}=-\frac{A_{12}}{A_{22}} \varepsilon_{\mathrm{x}}=-0.57 \varepsilon_{\mathrm{x}}$
$N_{x y}=0 \quad \therefore \gamma_{\mathrm{xy}}=0$
(ii) For the $0^{\circ}$ ply: $\varepsilon_{1}=\varepsilon_{\mathrm{x}}$ etc, so
$\left(\begin{array}{c}\sigma_{1} \\ \sigma_{2} \\ \sigma_{12}\end{array}\right)=\left[\begin{array}{ccc}Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66}\end{array}\right]\left(\begin{array}{l}\varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12}\end{array}\right)=\left[\begin{array}{ccc}40.10 & 1.76 & 0 \\ 1.76 & 5.86 & 0 \\ 0 & 0 & 2.4\end{array}\right]\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12}\end{array}\right)$
Hence,
$\sigma_{1}=Q_{11} \varepsilon_{1}+Q_{12} \varepsilon_{2}=40.10 \varepsilon_{x}+\left(1.76 \times\left(-0.57 \varepsilon_{x}\right) \simeq 39.10 \varepsilon_{x}\right.$
$\sigma_{2}=Q_{12} \varepsilon_{1}+Q_{22} \varepsilon_{2}=1.76 \varepsilon_{x}+\left(5.86 \times\left(-0.57 \varepsilon_{x}\right) \simeq-1.58 \varepsilon_{x}\right.$
$\sigma_{12}=0\left(\right.$ since $\left.\gamma_{12}=0\right)$
For the $+45^{\circ}$ ply

$$
\begin{aligned}
\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right) & =[T]^{-T}\left(\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right)=\left(\begin{array}{ccc}
c^{2} & s^{2} & s c \\
s^{2} & c^{2} & -s c \\
-2 s c & 2 s c & c^{2}-s^{2}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & -0.5 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{x} \\
-0.57 \varepsilon_{x} \\
0
\end{array}\right)=\left(\begin{array}{c}
0.5 \varepsilon_{x}-0.285 \varepsilon_{x} \\
0.5 \varepsilon_{x}-0.285 \varepsilon_{x} \\
-\varepsilon_{x}-0.57 \varepsilon_{x}
\end{array}\right)=\left(\begin{array}{c}
0.215 \varepsilon_{x} \\
0.215 \varepsilon_{x} \\
-1.57 \varepsilon_{x}
\end{array}\right)
\end{aligned}
$$

where $c=\cos 45=\sin 45=\frac{\sqrt{2}}{2}$
$\left(\begin{array}{c}\sigma_{1} \\ \sigma_{2} \\ \sigma_{12}\end{array}\right)=\left[\begin{array}{ccc}Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66}\end{array}\right]\left(\begin{array}{c}\varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12}\end{array}\right)=\left[\begin{array}{ccc}40.10 & 1.76 & 0 \\ 1.76 & 5.86 & 0 \\ 0 & 0 & 2.4\end{array}\right]\left(\begin{array}{c}0.215 \varepsilon_{x} \\ 0.215 \varepsilon_{x} \\ -1.57 \varepsilon_{x}\end{array}\right)$

$$
\begin{aligned}
& \sigma_{1}=Q_{11} \varepsilon_{1}+Q_{12} \varepsilon_{2}=40.10 \times 0.215 \varepsilon_{x}+1.76 \times 0.215 \varepsilon_{x} \simeq 9 \varepsilon_{x} \\
& \sigma_{2}=Q_{12} \varepsilon_{1}+Q_{22} \varepsilon_{2}=1.76 \times 0.215 \varepsilon_{x}+5.86 \times 0.215 \varepsilon_{x} \simeq 1.64 \varepsilon_{x} \\
& \sigma_{12}=Q_{66} \gamma_{12} \simeq-3.77 \varepsilon_{x}
\end{aligned}
$$

For the $-45^{\circ}$ ply

$$
\begin{aligned}
\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right) & =[T]^{-T}\left(\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right)=\left(\begin{array}{ccc}
c^{2} & s^{2} & s c \\
s^{2} & c^{2} & -s c \\
-2 s c & 2 s c & c^{2}-s^{2}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0.5 & 0.5 & -0.5 \\
0.5 & 0.5 & 0.5 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{x} \\
-0.57 \varepsilon_{x} \\
0
\end{array}\right)=\left(\begin{array}{c}
0.5 \varepsilon_{x}-0.285 \varepsilon_{x} \\
0.5 \varepsilon_{x}-0.285 \varepsilon_{x} \\
-\varepsilon_{x}-0.57 \varepsilon_{x}
\end{array}\right)=\left(\begin{array}{c}
0.215 \varepsilon_{x} \\
0.215 \varepsilon_{x} \\
1.57 \varepsilon_{x}
\end{array}\right)
\end{aligned}
$$

where $c=\cos (-45)=\frac{\sqrt{2}}{2}$ and $s=\sin (-45)=-\frac{\sqrt{2}}{2}$

$$
\begin{aligned}
& \left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{12}
\end{array}\right)=\left[\begin{array}{ccc}
Q_{11} & Q_{12} & 0 \\
Q_{12} & Q_{22} & 0 \\
0 & 0 & Q_{66}
\end{array}\right]\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\gamma_{12}
\end{array}\right)=\left[\begin{array}{ccc}
40.10 & 1.76 & 0 \\
1.76 & 5.86 & 0 \\
0 & 0 & 2.4
\end{array}\right]\left(\begin{array}{c}
0.215 \varepsilon_{x} \\
0.215 \varepsilon_{x} \\
1.57 \varepsilon_{x}
\end{array}\right) \\
& \sigma_{1} \simeq 9 \varepsilon_{x} \\
& \sigma_{2} \simeq 1.64 \varepsilon_{x} \\
& \sigma_{12}=Q_{66} \gamma_{12} \simeq 3.77 \varepsilon_{x}
\end{aligned}
$$

The only difference between the in-plane stresses for the $\pm 45$ plies is that $\sigma_{12}$ for the $-45^{\circ}$ ply have the opposite sign from the corresponding term for the $+45^{\circ}$ ply.

2 (ca) Cost, manufacturing mateicil propeties are bey Manufacturas
as mating tiad sate molled pats by in jection malding requics a short tibie matriel

- sumilarly had-spray gives a In perfornance rantom shuture

For medium perfornence malling is sman $\sim 2$ naw vacuucm ipesin beeraces relevant, with frrining of dry fabsies being inportant.
Hand lay-up or automated processes can teal with more tailored Lay-ms', viduling UD tows or lilewent winding tows This gries a wider rang of lay-af potions Sanilarty peltresion allaws for diferent multiaxicil a $\partial$ US fabrees to pive differeat monerties.
Mahancial pirpertes ca dso ditotet architetove, so UD pios better in-plene propeties alay fobres bet poor splitting esistance. Where inplect resistence is infortant unen or trioded bubies are common
$2(b)(1)$ Tsei-HAll critera
Nerd t lid $\sigma$ delay an 2 transuesse to furre divector cach ply

$$
\begin{aligned}
& \left(\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
r_{x y}
\end{array}\right)=[\mathrm{A}]^{-1}\left(\begin{array}{c}
N_{x} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0.0134 & -0.0088 & 0 \\
-0.0088 & 0.0310 & 0 \\
0 & 0 & 0.0317
\end{array}\right)\left(\begin{array}{c}
N_{x} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
0.0134 \\
-0.0088 \\
0
\end{array}\right) \frac{N_{x}}{10^{-6} N_{m}^{-1}} \\
& 0 .
\end{aligned}
$$

$\left[\begin{array}{lll}\text { For } & D_{0} & \left(\begin{array}{l}\varepsilon_{1} \\ c_{2} \\ r_{x y}\end{array}\right)=\left(\begin{array}{c}0.0134 \\ -0.0088 \\ 0\end{array}\right) N_{x} \times 10^{-6} N_{n}^{-7}\end{array}\right]$

$$
\begin{array}{ll}
\text { Fir }+45^{\circ}\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
r_{n}
\end{array}\right)=\left[T T^{-T}\binom{\varepsilon_{x}}{\varepsilon_{n}}=\left(\begin{array}{ccc}
\frac{1}{2} & 1 / 2 & \frac{1}{2} \\
\frac{1}{2} & 1 / 2 & -1 / 2 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
0.0134 \\
-0.0088 \\
0
\end{array}\right)=\left(\begin{array}{c}
0.0023 \\
0.0023 \\
-0.0221
\end{array}\right) N_{x} \times 10^{-6} N^{-4} \mathrm{~m}\right.
\end{array}
$$

$$
\left(\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{12}
\end{array}\right)=Q\left(\begin{array}{l}
c_{1} \\
c_{2} \\
r_{12}
\end{array}\right)=\left(\begin{array}{ccc}
139 & 2.7 & 0 \\
2.7 & 9 & 0 \\
0 & 0 & 6.9
\end{array}\right)\left(\begin{array}{c}
0.0023 \\
0.0023 \\
-0.021
\end{array}\right) \times 10^{-6} 0_{x} \mathrm{~N}^{-6} \mathrm{~N}^{2} \mathrm{~m}
$$

$$
=\left(\begin{array}{c}
0.329 \\
0.027 \\
-0.153
\end{array}\right) \times 10^{3} N_{x} m^{-1}=\left(\begin{array}{c}
329 \\
27 \\
-153
\end{array}\right) N_{x} m^{-1}
$$

$$
\begin{aligned}
& \text { +45ad-45 symanchicil } \\
& \text { izalencel yantici } \Rightarrow B=0 \\
& A_{16}=A_{2}=0 \\
& =\left[\begin{array}{ccc}
91.6 & 25: 88 & 0 \\
25.88 & 39.6 & 0 \\
0 & 0 & 3156
\end{array}\right] \times 1 \mathrm{O}^{6} \mathrm{Nan}^{-1}
\end{aligned}
$$

2 (b)(1) Tai Hdl $S_{L}^{+}=1448 \mathrm{~m} / \mathrm{a} \quad S_{T}^{-}=48.3 \mathrm{~m} / \mathrm{a} \quad S_{C T}=621 \mathrm{~m} / \mathrm{a}$

$$
\begin{aligned}
& \left(\frac{329}{1406}\right)^{2}-\left(\frac{329.27}{1448^{2}}\right)+\left(\frac{27}{48 \cdot 3}\right)^{2}+\left(\frac{153}{62 \cdot 1}\right)^{2}=\frac{1}{W_{x}^{2}} \frac{(\mathrm{mP4})^{2}}{\mathrm{~m}^{-2}} \\
& V_{x}=394 \mathrm{kN} \mathrm{~m}^{-1} \quad \hat{\rho} \quad \text { donciat } \quad
\end{aligned}
$$

Critual facture as shear failure of either t es or -45 pies as the find term associated wite shear is dommiant.
(ii)


$$
\rightarrow
$$

2(b) (ii) Need is insider the Mast in the succor stress a 2 stan in the $\pm \mathbb{C} 5$ plies
From Mohrs circle or $T^{-1}, r_{12}=-\Sigma_{x}+\Sigma_{y}$
Changais the stiffness $f$ jest the $0^{\circ}$ flies docs 't change $\gamma_{x y}$. Imagine ingoing a $\Sigma_{x}$, then the $\pm 45$ plies see the same $\varepsilon_{x}$ as before, 22 the local En of the $0^{\circ} \mathrm{ply}$ is also unchanged So ss change in the of axis ply loading at the same Dry
So increase the $0^{\circ} \mathrm{py}$ relines decreases $\varepsilon_{x}$ ab $\varepsilon_{y}$, hence decreases $r_{12}$ in tho AP-axis pier an the jaime load goes ep.
The laminate stall ps increases by $\frac{132 \times 1.5+90}{139+90}=1.30$ So the expected shear stain decreases by $30 \%$ or the strength increases by $30 \%$
[CCsm dict - increase of $37 \%$, the dopperance being due to the mixed $\sigma$ failure criterion.]

3 (a) Hendle-probablyn, sifffress liaitel wate torscin also baing rclovent

- may want a bit ot lexichility
- an tailor the puperties af ruit.
- mare hollar to relace veghet (whici will be an portat)

At hitting face, need \& ensure jord stinga à infact resutance - use a woven material Dinaling with glass. weight may nut be so critual es this is readed at inpart momentaren is puech
Joinag /shagang will be bey conscilerations
Damage labuse will requice a trugh exteriv.

3 (b)

$$
\left.\begin{array}{l}
\text { incresen, } \\
\text { compurits }
\end{array}\right\}
$$


material tests (Copmi)
The ilea is that the many tests at Low lacls undergen the overall desige, lelpigg also motel cmplex shapes as leflerent load ases The mare complex slement as sab-compment tests provile vencrue data. just a for bell tests valilate the overall design. In prencijle this porides a robest tatang regiane, bat is veny axpersive c taric consuming. Also it nates change rolatividy difficilt Nar materite or uncegts need exturive re-wriaj.
For the cu-hochey stich moul less testig is reded, partumarty with fuer conpm ab demant tasts. Full sade tests will be iuportat to demmstate the less well-deficd use curcs, induding ingact and fotigue failure. Wike the bailure less safty crituial, oror all mere uncertainity an be tolerated.

3 (c)(i)


Failere - ese 乏 allavable.
-no uled to warry about 1 staei at neglect sheer fhe

From Tanie $1 e^{+}=0.004 \quad e_{L T}=0005$
so wits paiure is mad $A$ at the rame Face (mexisinues mess):

$$
\begin{aligned}
\frac{E_{x}}{G_{x y}}=\frac{N_{x} l_{e}}{N_{x y} / C_{\text {CT }}}=2 \frac{5}{4} \times \frac{m}{Q} & =2.5 \frac{m}{Q} \\
\Rightarrow 90^{\circ} \% & \Rightarrow \frac{m}{Q}=04 \times E_{x}
\end{aligned}
$$

Lemit

$$
\begin{aligned}
60 \% 0 & : 30 \% \pm 45 \Rightarrow E_{x}=95, G_{x y}=16 \\
& \Rightarrow M / Q=2.38
\end{aligned}
$$



$$
\begin{aligned}
0 \% 0 & : 90 \% \pm 45 \Rightarrow E_{x}=27, G_{x y}=33 \\
& \Rightarrow M, Q=0.33 \\
10 \% 0 & : 80 \% \pm 45 \Rightarrow E_{x}=33, G_{x y}=30 \\
& \Rightarrow M / a=0.52 \\
30 \% 0 & : 60 \% \pm 45 \Rightarrow E_{x}=60, G_{x y}=24 \\
& \Rightarrow M / a=1
\end{aligned}
$$

$$
90 \% 0: 0 \% \pm 45 \Rightarrow E_{x}=128, \sigma_{x y}=7 \Rightarrow M / 2=7.31
$$

$$
\begin{aligned}
& 2 \pi R^{2} \times N_{x y}=Q \quad \Rightarrow N_{x y}=\frac{\omega}{2 \pi R^{2}} \\
& { }^{\prime}\left(\underline{y}=m^{\prime} \Rightarrow \quad \frac{N_{x} / A}{R}=\frac{M}{\pi R^{3} K} \Rightarrow N_{x}=\frac{M}{\pi R^{2}}\right. \\
& \frac{N_{x}}{N_{x y}}=\frac{2 m}{Q} \quad U^{e^{+}<e^{-} \text {socititial }} \\
& \text { Foilues } \quad \varepsilon_{x}=e^{+}=N x / E_{x} t \\
& r=e_{L T}=N_{x y} / /_{x y y} t
\end{aligned}
$$

3 (c)(ii) For glass fihhes in 45 phes

- this will affat Nay Coading where we expect faidere is the $\pm \mathbb{E}$ phis - doest't a/frat wx loading so mewh

Since $C_{L T}$ is the sane por GFRP as CFRP
but Gxy is Lrwer for GFRP umpaed wit CFRP
$\Rightarrow$ compsite tube is weaher in torscen
$\Rightarrow$ need to have higher proportion of $\pm \mathrm{E} 5$ plies for given M/ , curve maresdom.

4 (a) Traniverice stanga - Cepradag ca be the weahert lik.

- crapli jui up

Tersile strengte

- clustered Idon cio Apat when stetaiteir of lutre stiongh
a.d shear lay me (aftutal in debris))
pive failare at near neigh buer fithe
Toughnesi-
- work dae due a pull ut
a Mey conticibutor of
debon ing icluces stiong a 100

- Cecale $\sin \partial \Rightarrow$
- loager shear logzze $\Rightarrow$
- more lididy bo get aljuent brotes lisce
toanghess where lisies oridye creak. weaker himd pies enhanced troughess.
h all ceses sizing a the fibter entances the bandstienglt.


(ii) Massimem pullout proc when shear stress reaches its peat value all along the embodied fibre $\Rightarrow P_{\text {max }}=\underbrace{\pi d L}_{\text {area }}+\tau_{\gamma}$

$$
\frac{\hat{\jmath}_{\text {max }}}{d v \tau_{\gamma} \hat{\jmath}_{i}}
$$

$$
\text { at this af, assume }\rangle \gg d
$$

(iii) Assume that work done in (A) on curve (where there is linitel $s$ (ip) is mall less than (B). This will be true assconaing $\delta f$ is small compared with $L$

(iv) Step first occurs at top if ankodled seta. where cree is maximum $\delta$. Weed to ind $\delta$ as paction of $x$
From equidibrien $\frac{\pi d^{2} d \sigma}{4 d x}=\tau \pi d \Rightarrow \frac{d \sigma}{d x}=4 \tau / d$


From strain equation $\frac{d S}{d x}=\Sigma_{\lambda}=\frac{\sigma}{E}$
Fro destaits $\quad \varepsilon E=\sigma$
From rieplear $\tau=\lambda \delta$ where $\lambda=\tau \delta / \delta \gamma$
Finan(1) $\frac{d^{2} \delta}{d x^{2}}=\frac{d \sigma}{d x} \frac{1}{E}=\frac{4 \tau}{E d}=\frac{4 \lambda}{E d} \delta=\mu^{2} \delta$ where $\mu^{2}=\frac{4 \delta}{\frac{4 t f}{E d \delta f}}$
Solution is $\sinh$ or cosh, here $\sinh$ with $\delta=0$ at $x=0$; also $x=C, \delta=\delta \gamma$

$$
\Rightarrow \delta=\delta \gamma \sin h \mu x / \sin L \mu L, P=\sigma_{L} \frac{\pi d^{2}}{4}=\left.\frac{\pi d^{2}}{d} E \frac{d \delta}{d \lambda 1}\right|_{x=c}=\frac{\pi d^{2} E \mu \delta j \operatorname{coth}(\mu)}{4}
$$

## Examiner's Comments

## Question 1: Elastic Deformation

A popular question. Marks were lost mainly because of errors in estimating the laminate stiffness in part (b) and the stresses in part c(ii). A significant number of candidates erroneously took $\gamma_{12}$ for $\pm 45$ plies as zero in part c(ii).

## Question 2: Stress-based lamina failure

Part (a) wasn't answered very well due to lack of details. Several candidates focused on long and short fibre composites and didn't refer to the manufacturing methods or cost. Part b(i) was answered reasonably well but again several candidates took $\gamma_{12}$ for $\pm 45$ plies as zero. Also, several candidates made numerical errors in estimating the stresses and ended up identifying a different failure mode. Part b(ii) was answered less well. However, the majority of candidates were able to deduce that the strength will increase.

## Question 3: Laminate design (carpet plots)

Parts (a), (b) and c(ii) were answered reasonably well. In part c(i), several candidates made errors in the formulas for the shear and direct stress resultants, making it difficult to estimate $M / Q$. Despite errors, most candidates were able to deduce that, for a given $M / Q$, a higher proportion of $\pm 45^{\circ}$ plies was required for GFRP (part c(ii)).

## Question 4: Micromechanics Strength)

This was a very unpopular question - only four candidates attempted this question. The candidates had to think a bit outside the box to answer this question. Part (a) was straightforward and was answered quite well. In part $b(i)$, candidates sketched the applied load versus displacement with an initial elastic region but then assumed that applied load would remain constant during fibre pull-out. Parts b(ii-iv) were answered poorly as students seemed to run out of time.

[^0]
[^0]:    Athina E. Markaki (Principal Assessor)

