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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 25 April 2023 2 to 3.40

Module 4C6

ADVANCED LINEAR VIBRATIONS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4C6 Advanced Linear Vibration data sheet (9 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 Figure 1 shows a simple model of a three-storey building. The building is steel-
framed with bolted joints. Each floor of the building has mass <, and the lateral stiffness
between floors is : , i.e. the restoring force between a pair of floors is : times their relative
displacement. The lateral deflection of the =th floor with respect to ground is denoted H=.
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Fig. 1

(a) The undamped natural frequencies l= have been calculated numerically, giving:

l2
=<

:
=

[
0.1981 1.5550 3.2470

]
Find the corresponding undamped mode shapes. [10%]

(b) List three mechanisms of damping that you would expect to be significant for this
structure and justify your answers. [10%]

(c) In order to increase the damping of the structure, a viscous damper with dashpot
rate 2 is now added between the first and second floors as shown in Fig. 1. Write down an
expression for the Rayleigh dissipation function, and find the damping matrix. [10%]

(d) Write down the unforced equation of motion for the structure, including the damper,
in the form:

¤z = Az

Write out your definition of the full vector z and all entries of the matrix A. [20%]
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(e) The eigenvalue vector ‘lambda_A’ and eigenvector matrix ‘Phi_A’ of A have been
computed numerically, using the following values: < = 1 kg, : = 100Nm−1, 2 = 1Nsm−1

(representing a laboratory scalemodel of the building). Three of the numerically computed
eigenvalues and corresponding eigenvectors are reported as:

lambda_A = 

[  -0.883 + 17.979j    -0.083 + 12.48j     -0.035 + 4.451j ]

Phi_A = 

[[ -0.019 + 1.j         0.007 + 1.j        -0.01 + 1.j   ]
[ -0.06 - 1.231j     -0.045 + 0.449j      0.021 + 1.801j ]
[  0.104 + 0.538j      0.051 - 0.807j      0.017 + 2.246j ]
[-17.962 - 1.229j    -12.48 - 0.j        -4.451 - 0.079j ]
[ 22.179 - 0.j        -5.594 - 0.603j     -8.017 + 0.031j ]
[ -9.771 + 1.394j     10.062 + 0.709j     -9.998 - 0.j   ]]

(i) What is the physical interpretation of each eigenvector having a length of 6? [5%]

(ii) What is the physical interpretation of the mode shapes being complex? [10%]

(iii) How many eigenvalues and eigenvectors are there in total, and how do the
missing ones relate to the ones printed above? [10%]

(iv) Make a table that shows the natural frequency, the mode shape, and the &-
factor for each mode. [15%]

(v) How would you expect the results to change if a damper was included between
each floor (including between ground and the first floor)? [10%]
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2 The out-of-plane displacement H of a circular membrane with uniform tension %
and mass per unit area d is expressed in polar coordinates (A, \), where \ is measured
in radians. The partial differential equation that describes H(A, \, C) for the membrane is
given by:

%

(
m2H

mA2 +
1
A

mH

mA
+ 1
A2
m2H

m\2

)
= d

m2H

mC2

The membrane is fixed at a radius 0 = 0.4m and the wave speed is
√
%/d = 40ms−1. For

reference Fig. 2 shows the first four Bessel functions of the first kind, labelled with the
zero-crossings of each function.

(a) Using the separation of variables method, with H = '(A)� (\)e8lC , find the
differential equations satisfied by '(A) and � (\). [20%]

(b) Sketch the nodal lines for all modes with up to two nodal diameters or two nodal
circles (not counting the boundary) or both. [20%]

(c) In order of increasing frequency, list the first six modes of the membrane. Label the
modes as (<, =), where < is the number of nodal circles, and = is the number of nodal
diameters, and find numerical values for the natural frequencies. [20%]

(d) An accelerometer with a small (but non-negligible) mass is placed at coordinates
(0.4350, 0). The membrane is struck with an instrumented hammer at (0.90, c/2). Sketch
the transfer function that you would expect on a dB scale, over the range of frequencies
spanned by the modes listed in part (c), labelling key frequencies. [30%]

(e) Describe briefly what happens to the natural frequencies of the membrane as the
added mass of the accelerometer increases, including what would happen as the mass
tends to infinity. [5%]

(f) How would the behaviour referred to in part (e) change if the mass was removed,
and instead the membrane was connected to ground by a spring of infinite stiffness? [5%]
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Fig. 2
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3 An electromagnetic shaker and LVDT displacement transducer are used to measure
the response of a cantilevered floor beam by conducting a frequency sweep over the first
three modes of vibration. Table 1 summarises measurements of the driving-point response
at the tip of the cantilever, for eachmode, togetherwith the pseudo-static response at 0.1Hz.

Mode Frequency (Hz) Response amplitude (mm/N)
- 0.1 1.13
1 9.6 41.56
2 60.3 1.06
3 168.9 0.14

Table 1

(a) By considering the frequency response function as a modal sum, show that the
Q-factor may be estimated from the amplitude of the first mode and the pseudo-static
response. Calculate this Q-factor and hence estimate the half-power bandwidth for each
mode, assuming the damping in the beam is independent of frequency. [20%]

(b) Sketch the magnitude of the displacement frequency-response function using a
decibel vertical axis. [25%]

(c) Sketch the corresponding Nyquist plot for the velocity frequency-response function,
highlighting the important features. [25%]

(d) The shaker is moved from the tip of the cantilever to a position close to, but not at,
the root. Indicate on your sketches for part (a) and part (b) how you expect the functions
to change. [20%]

(e) It is suggested to use an impulse hammer, rather than a shaker, to excite the beam.
Describe the potential advantages and disadvantages of doing this. [10%]
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4 A ski manufacturer seeks to maximise the damping of a ski by investigating material
and construction choices.

(a) Use Rayleigh’s principle together with the ‘correspondence principle’ to derive an
expression for the Q-factor of a uniform Euler beam, and estimate values for each of the
following materials:

(i) carbon fibre (CFRP)

(ii) titanium

(iii) wood [20%]

(b) It is proposed that a ski could be constructed using a symmetric three-layer design,
such that a core material is sandwiched by an identical pair of top and base layers. In
this case, the ‘three-layer’ formula for the effective bending stiffness �� simplifies to the
following:

�� = �1

{
ℎ3

1
6
+ ℎ1(ℎ1 + ℎ2)26

1 + 26

}
+ �2

{
ℎ3

2
12
−
ℎ2

2(ℎ1 + ℎ2)
12(1 + 26)

}
For a wooden core with CFRP top and base layers, estimate the effective loss factor when
the wavelength is approximately 2m. Use material properties from the datasheet listing
your selected values, together with the following: ℎ1 = 0.5mm, ℎ2 = 10mm, �2 = �2/3
and assume that the shear loss factor for wood is [� = 0.1. [20%]

(c) Assume now that damping is dominated by shear in the core, i.e. assume [� = 0.1
and that �1 and �2 are real-valued. What value for the real part of �2 results in the
maximum imaginary part of ��, and what is the corresponding effective Q-factor? You
may use the result that:

imag (��) ≈ m��
m6

6[�

[50%]

(d) Comment on the effectiveness of the three-layer design in terms of damping
performance. [10%]

END OF PAPER
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Part IIB Data Sheet

Module 4C6 Advanced Linear Vibration

1 Vibration Modes and Response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 2 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 2 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 2) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)TMu(k) =

{
0 j 6= k
1 j = k

u(j)TKu(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k

4C6 data sheet 2021 Page 1



6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑
j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑
j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.

7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑
n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑
n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑
n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑
n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.
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10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑
n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑
n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑
n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑
n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).
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1.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 2.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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2 Governing equations for continuous systems

2.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

2.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

2.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

2.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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Some devices for vibration excitation and measurement 

Moving coil electro-magnetic shaker 
LDS V101: Peak sine force 10N, internal armature resonance 12kHz. Frequency range 5 – 
12kHz, armature suspension stiffness 3.5N/mm, armature mass 6.5g, stroke 2.5mm, shaker 
body mass 0.9kg 
LDS V650: Peak sine force 1kN, internal armature resonance 4kHz. Frequency range 5 – 
5kHz, armature suspension stiffness 16kN/m, armature mass 2.2kg, stroke 25mm, shaker body 
mass 200kg 
LDS V994: Peak sine force 300kN, internal armature resonance 1.4kHz. Frequency range 5 
– 1.7kHz, armature suspension stiffness 72kN/m, armature mass 250kg, stroke 50mm,
shaker body mass 13000kg

Piezo stack actuator 
FACE PAC-122C 
Size 2×2×3mm, mass 0.1g, peak force 12N, stroke 1µm, u
nloaded resonance 400kHz 

Impulse hammer 
IH101 
Head mass 0.1kg, hammer tip stiffness 1500kN/m, force transducer sensitivity 4pC/N, 
internal resonance 50kHz 

Piezo accelerometer 
B&K4374 Mass 0.65g sensitivity 1.5pC/g, 1-26kHz, full-scale range +/-5000g 
DJB A/23 Mass 5g, sensitivity 10pC/g, 1-20kHz, full-scale range +/-2000g 
B&K4370 Mass 10g sensitivity 100pC/g, 1-4.8kHz,  full-scale range +/-2000g 

MEMS accelerometer 
ADKL202E 
265mV/g 
Full scale range +/- 2g 
DC-6kHz

Laser Doppler Vibrometer 
Polytec PSV-400 Scanning Vibrometer 
Velocity ranges 2/10/50/100/1000 [mm/s/V] 
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VIBRATION DAMPING 

Correspondence principle 

For linear viscoelastic materials, if an undamped problem can be solved then the 
corresponding solution to the damped problem is obtained by replacing the elastic moduli 
with complex values (which may depend on frequency): for example Young’s modulus 

€

E → E(1+ iη) .  Typical values of E and 

€

η for engineering materials are shown below: 

For a complex natural frequency  ω :

 ω !ω n 1+ iζ n( ) !ω n 1+ iηn / 2( ) !ω n 1+ i / 2Qn( )

and 

ω 2 !ω n
2 1+ iηn( ) !ω n

2 1+ i /Qn( )
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Free and constrained layers 
For a 2-layer beam: if layer j has Young’s modulus 

€

E j , second moment of area 

€

I j  and 
thickness 

€

h j , the effective bending rigidity EI  is given by: 

EI = E1I1 1 + eh3 + 3 1 + h( )2
eh

1 + eh
! 

" 
# 

$ 

% 
&  

where 

e = E2
E1
, h = h2

h1
 .

For a 3-layer beam, using the same notation, the effective bending rigidity is 

EI = E1
h1
3

12
+ E2

h2
3

12
+ E3

h3
3

12
− E2

h2
2

12
h31− d
1+ g

" 

# 
$ 

% 

& 
' + E1h1d2 + E2h2 h21− d( )2

+E3h3 h31− d( )2 − E2h2
2

h21 − d( ) + E3h3 h31− d( )" 
#$ 

% 
& ' 
h31− d
1+ g

" 

# 
$ 

% 

& 
' 

where   d =
E2h2 h21 − h31 / 2( ) + g E2h2h21 + E3h3h31( )
E1h1 + E2h2 / 2 + g E1h1 + E2h2 + E3h3( )

,

h21 =
h1 + h2
2

, h31 =
h1 + h3
2

+ h2 , g = G2
E3h3h2p2

,

€

G2 is the shear modulus of the middle layer, and p   = 2π / wavelength( ) , i.e. “wavenumber”.

Viscous damping, the dissipation function and the first-order method 

For a discrete system with viscous damping, then Rayleigh’s dissipation function 

€

F =
1
2

˙ y t C ˙ y  is equal to half the rate of energy dissipation, where

€

˙ y  is the vector of 

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix. 

If the system has mass matrix M and stiffness matrix K, free motion is governed by 

€

M ˙ ̇ y + C ˙ y + K y = 0. 

Modal solutions can be found by introducing the vector 

€

z =
y
˙ y 
" 

# 
$ 
% 

& 
' .  If 

€

z = ueλt  then

€

u, λ  are the 

eigenvectors and eigenvalues of the matrix 

€

A =
0 I

−M−1K −M−1C
# 

$ 
% 

& 

' 
(  

where 0 is the zero matrix and I is the unit matrix. 
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THE HELMHOLTZ RESONATOR 

A Helmholtz resonator of volume V with a neck of effective length L and cross-sectional area 
S has a resonant frequency 

€

ω = c S
VL

where c is the speed of sound in air. 

The end correction for an unflanged circular neck of radius a is 0.6a. 

The end correction for a flanged circular neck of radius a is 0.85a. 

VIBRATION OF A MEMBRANE 

If a uniform plane membrane with tension T and mass per unit area m undergoes small 
transverse free vibration with displacement 

€

w , the motion is governed by the differential 
equation 

€

T ∂2w
∂x2

+
∂2w
∂y2

# 

$ 
% % 

& 

' 
( ( = m

∂2w
∂t2

   

in terms of Cartesian coordinates x, y or 

€

T ∂2w
∂r2

+
1
r
∂w
∂r

+
1
r2
∂2w
∂θ2

$ 

% 
& & 

' 

( 
) ) = m

∂2w
∂t2

in terms of plane polar coordinates 

€

r,θ . 
 
For a circular membrane of radius a the mode shapes are given by 

  

€

sin
cos

" 
# 
$ 
nθ Jn (kr), n = 0,1,2,3 

where 

€

Jn  is the Bessel function of order n and k is determined by the condition that 

€

Jn (ka) = 0.  The first few zeros of 

€

Jn ’s are as follows: 

n = 0 n = 1 n = 2 n = 3 
ka = 2.404 3.832 5.135 6.379 
ka = 5.520 7.016 8.417 9.760 
ka = 8.654 10.173 

For a given k the corresponding natural frequency 

€

ω satisfies

k = ω m T . 
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