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Module 4C6

ADVANCED LINEAR VIBRATIONS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.
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1 The lateral response of a three-storey building may be described using the model
shown in Fig.1. All three floors have the same mass 𝑚, and the lateral stiffness between
floors is 2𝑘 . As part of a full-scale dynamic test, accelerometer measurements are made
on each floor whilst the building responds to ambient excitation from the wind. Initial
Fourier analysis indicates the natural frequencies to be 3.8 Hz, 10.7 Hz and 15.4 Hz.

Fig. 1

(a) State the fundamental assumptions necessary to have confidence in the identified
natural frequencies and explain why such measurements are unsuitable for measuring the
mode shapes of the building using standard modal analysis techniques. [20%]

(b) It is suggested that an impulse hammer is used to measure the frequency-response
functions for excitation applied to the bottom floor. Sketch the anticipated mode shapes and
hence, using a decibel vertical axis, sketch the anticipated magnitude of the acceleration
frequency-response function for each floor over a frequency range that includes all three
natural frequencies. You are not expected to calculate the modes. [35%]

(c) Sketch the corresponding Nyquist plot of the frequency-response function for the
top floor with excitation applied to the bottom floor. Identify each of the modal circles. [15%]
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(d) The proposed impulse hammer has a tip mass of 5 kg.

(i) Calculate the minimum tip stiffness for the hammer to be potentially useful
for identifying the first three mode shapes. [15%]

(ii) Explain why an impulse hammer may not be a suitable choice of excitation in
this case and discuss possible alternatives. [15%]
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2 (a) Figure 2 shows three masses 𝑚𝑖 that are free to move on a frictionless circular
track in the horizontal plane. At equilibrium, the masses are equally spaced around the
track. The circumferential displacements of the masses are denoted 𝑥𝑖. Adjacent masses
𝑚𝑖 and 𝑚 𝑗 are connected to each other via springs of stiffness 𝑘𝑖 𝑗 , defined such that the
tangential force that each spring applies to its connected masses is 𝑓 = ±𝑘𝑖 𝑗 (𝑥𝑖 − 𝑥 𝑗 ).
Initially all masses and stiffnesses are equal to 𝑚 and 𝑘 respectively.

(i) Find the mass and stiffness matrices M and K of the system. [10%]

(ii) Find the mode shapes and natural frequencies. [10%]

(b) Damping is now included in the model by a set of viscous dashpots connecting the
masses in parallel with the springs. The damping rate between masses 2 and 3 is twice
that of the others, i.e. 𝑐12 = 𝑐31 = 𝑐 and 𝑐23 = 2𝑐. Subscripts follow the notation for the
springs 𝑘𝑖 𝑗 and correspond to the adjacent masses.

(i) Find an expression for the Rayleigh dissipation function and hence find the
damping matrix C. [10%]

(ii) Write the equation of motion for the damped system in first order form, ¤z = Az.
Define z and write A in terms of M, C and K. [5%]

(iii) Without calculation, describe what you expect for the eigenvalues of A. [15%]

(c) The dashpots from part (b) are removed. The spring 𝑘23 is replaced with a complex
stiffness that has damping modelled using a loss factor 𝛾, such that 𝑘23 = 𝑘 (1 + 𝑖𝛾). The
other springs are undamped. Using the correspondence principle together with Rayleigh’s
principle, estimate the 𝑄-factor for each mode. [50%]

Fig. 2
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3 (a) Figure 3(a) shows a thin-walled enclosure of volume 𝑉 . A hole of effective
radius 𝑎1 and area 𝐴1 is made at one end. The ‘air-plug’ within the hole is indicated by the
dashed line (not to scale), and its displacement is denoted 𝑥1, noting the sign convention
shown in the figure.

(i) By considering the force 𝑓1 that acts on the air-plug given a displacement
𝑥1, derive an expression for the effective stiffness 𝑘1 of the air volume. Recall that
𝑝 = −𝐾𝑣/𝑉 , where 𝑝 is the pressure change inside the volume, 𝐾 is the bulk modulus
of air and 𝑣 is the small change in volume 𝑉 that arises from the displacement 𝑥1. [20%]

(ii) Using your result from (a)(i) or otherwise, derive the natural frequency for the
Helmholtz oscillator. The speed of sound in air is given by 𝑐2 = 𝐾/𝜌, where 𝜌 is
the density of air. [20%]

(b) A second circular hole of effective radius 𝑎2 and area 𝐴2 is now made at the opposite
end of the enclosure, as shown in Fig. 3(b). The displacement of the second air-plug is
denoted 𝑥2, noting the sign convention shown in the figure.

(i) From Newton’s second law and by considering the forces 𝑓1 and 𝑓2 that act
on the air-plugs given displacements 𝑥1 and 𝑥2, or otherwise, derive the equation of
motion for the two-hole system. Write your answer in the form:

M

[
¥𝑥1
¥𝑥2

]
+ K

[
𝑥1
𝑥2

]
=

[
0
0

]
,

where M is the mass matrix for the air-plugs and K is the effective stiffness matrix
of the air volume. [30%]

[20%]
(ii) For the symmetric case when both holes have effective radius 𝑎 and area 𝐴, 
find the mode shapes and natural frequencies.

(iii) Comment on how your answers to parts (a)(ii) and (b)(ii) are consistent with 
the interlacing theorem. [10%]

Fig. 3
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4 (a) A free-free beam is made from a material of Young’s modulus 𝐸 and density
𝜌. The cross-sectional area is 𝐴 and the second moment of area is 𝐼.

(i) Describe briefly the main sources of damping for beams made of steel, ceramic,
and a thermosetting plastic. [20%]

(ii) Suggest two experimental methods for estimating the material damping of the
beam, and identity potential problems that may arise when trying to make these
measurements. [20%]

(iii) Making use of the Ashby materials chart in the datasheet (showing loss
coefficient and Young’s modulus), estimate the likely range of 𝑄-factors for the
modes of the beam if it was made from steel. [10%]

(b) The beam rests on a uniform elastic foundation that has stiffness 𝐾 per unit length,
as illustrated in Fig. 4. The expression for the potential energy 𝑉 of the beam on an elastic
foundation is given by:

𝑉 =
1
2
𝐸𝐼

∫ 𝐿

0

(
𝜕2𝑦

𝜕𝑥2

)2

d𝑥 + 1
2
𝐾

∫ 𝐿

0
𝑦2d𝑥,

where 𝑦 is the transverse displacement of the beam.
The material loss factors of the beam and elastic foundation are 𝜂𝐸 and 𝜂𝐾 respectively.

(i) Derive an expression for the modal 𝑄-factors of the beam. Write your answer
in the form:

𝑄𝑛 = (𝐽1𝜂𝐸 + 𝐽2𝜂𝐾 )−1

and find expressions for 𝐽1 and 𝐽2. [40%]

(ii) Comment on the factors that affect the relative contribution of damping from
the beam and foundation materials. [10%]

beam: 𝐸, 𝐼, 𝜌, 𝐴, 

𝑥 = 0 𝑥 = 𝐿

𝐾,
𝜂𝐸  

𝜂K 

Fig. 4

END OF PAPER
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Part IIB Data Sheet

Module 4C6 Advanced Linear Vibration

1 Vibration Modes and Response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 2 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 2 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 2) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)TMu(k) =

{
0 j 6= k
1 j = k

u(j)TKu(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k

4C6 data sheet 2021 Page 1



6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑
j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑
j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.

7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑
n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑
n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑
n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑
n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.

4C6 data sheet 2021 Page 2



10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑
n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑
n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑
n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑
n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).
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1.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 2.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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2 Governing equations for continuous systems

2.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

2.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

2.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

2.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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Some devices for vibration excitation and measurement 

Moving coil electro-magnetic shaker 
LDS V101: Peak sine force 10N, internal armature resonance 12kHz. Frequency range 5 – 
12kHz, armature suspension stiffness 3.5N/mm, armature mass 6.5g, stroke 2.5mm, shaker 
body mass 0.9kg 
LDS V650: Peak sine force 1kN, internal armature resonance 4kHz. Frequency range 5 – 
5kHz, armature suspension stiffness 16kN/m, armature mass 2.2kg, stroke 25mm, shaker body 
mass 200kg 
LDS V994: Peak sine force 300kN, internal armature resonance 1.4kHz. Frequency range 5 
– 1.7kHz, armature suspension stiffness 72kN/m, armature mass 250kg, stroke 50mm,
shaker body mass 13000kg

Piezo stack actuator 
FACE PAC-122C 
Size 2×2×3mm, mass 0.1g, peak force 12N, stroke 1µm, u
nloaded resonance 400kHz 

Impulse hammer 
IH101 
Head mass 0.1kg, hammer tip stiffness 1500kN/m, force transducer sensitivity 4pC/N, 
internal resonance 50kHz 

Piezo accelerometer 
B&K4374 Mass 0.65g sensitivity 1.5pC/g, 1-26kHz, full-scale range +/-5000g 
DJB A/23 Mass 5g, sensitivity 10pC/g, 1-20kHz, full-scale range +/-2000g 
B&K4370 Mass 10g sensitivity 100pC/g, 1-4.8kHz,  full-scale range +/-2000g 

MEMS accelerometer 
ADKL202E 
265mV/g 
Full scale range +/- 2g 
DC-6kHz

Laser Doppler Vibrometer 
Polytec PSV-400 Scanning Vibrometer 
Velocity ranges 2/10/50/100/1000 [mm/s/V] 
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VIBRATION DAMPING 

Correspondence principle 

For linear viscoelastic materials, if an undamped problem can be solved then the 
corresponding solution to the damped problem is obtained by replacing the elastic moduli 
with complex values (which may depend on frequency): for example Young’s modulus 

€

E → E(1+ iη) .  Typical values of E and 

€

η for engineering materials are shown below: 

For a complex natural frequency  ω :

 ω !ω n 1+ iζ n( ) !ω n 1+ iηn / 2( ) !ω n 1+ i / 2Qn( )

and 

ω 2 !ω n
2 1+ iηn( ) !ω n

2 1+ i /Qn( )
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Free and constrained layers 
For a 2-layer beam: if layer j has Young’s modulus 

€

E j , second moment of area 

€

I j  and 
thickness 

€

h j , the effective bending rigidity EI  is given by: 

EI = E1I1 1 + eh3 + 3 1 + h( )2
eh

1 + eh
! 

" 
# 

$ 

% 
&  

where 

e = E2
E1
, h = h2

h1
 .

For a 3-layer beam, using the same notation, the effective bending rigidity is 

EI = E1
h1
3

12
+ E2

h2
3

12
+ E3

h3
3

12
− E2

h2
2

12
h31− d
1+ g

" 

# 
$ 

% 

& 
' + E1h1d2 + E2h2 h21− d( )2

+E3h3 h31− d( )2 − E2h2
2

h21 − d( ) + E3h3 h31− d( )" 
#$ 

% 
& ' 
h31− d
1+ g

" 

# 
$ 

% 

& 
' 

where   d =
E2h2 h21 − h31 / 2( ) + g E2h2h21 + E3h3h31( )
E1h1 + E2h2 / 2 + g E1h1 + E2h2 + E3h3( )

,

h21 =
h1 + h2
2

, h31 =
h1 + h3
2

+ h2 , g = G2
E3h3h2p2

,

€

G2 is the shear modulus of the middle layer, and p   = 2π / wavelength( ) , i.e. “wavenumber”.

Viscous damping, the dissipation function and the first-order method 

For a discrete system with viscous damping, then Rayleigh’s dissipation function 

€

F =
1
2

˙ y t C ˙ y  is equal to half the rate of energy dissipation, where

€

˙ y  is the vector of 

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix. 

If the system has mass matrix M and stiffness matrix K, free motion is governed by 

€

M ˙ ̇ y + C ˙ y + K y = 0. 

Modal solutions can be found by introducing the vector 

€

z =
y
˙ y 
" 

# 
$ 
% 

& 
' .  If 

€

z = ueλt  then

€

u, λ  are the 

eigenvectors and eigenvalues of the matrix 

€

A =
0 I

−M−1K −M−1C
# 

$ 
% 

& 

' 
(  

where 0 is the zero matrix and I is the unit matrix. 
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THE HELMHOLTZ RESONATOR 

A Helmholtz resonator of volume V with a neck of effective length L and cross-sectional area 
S has a resonant frequency 

€

ω = c S
VL

where c is the speed of sound in air. 

The end correction for an unflanged circular neck of radius a is 0.6a. 

The end correction for a flanged circular neck of radius a is 0.85a. 

VIBRATION OF A MEMBRANE 

If a uniform plane membrane with tension T and mass per unit area m undergoes small 
transverse free vibration with displacement 

€

w , the motion is governed by the differential 
equation 

€

T ∂2w
∂x2

+
∂2w
∂y2

# 

$ 
% % 

& 

' 
( ( = m

∂2w
∂t2

   

in terms of Cartesian coordinates x, y or 

€

T ∂2w
∂r2

+
1
r
∂w
∂r

+
1
r2
∂2w
∂θ2

$ 

% 
& & 

' 

( 
) ) = m

∂2w
∂t2

in terms of plane polar coordinates 

€

r,θ . 
 
For a circular membrane of radius a the mode shapes are given by 

  

€

sin
cos

" 
# 
$ 
nθ Jn (kr), n = 0,1,2,3 

where 

€

Jn  is the Bessel function of order n and k is determined by the condition that 

€

Jn (ka) = 0.  The first few zeros of 

€

Jn ’s are as follows: 

n = 0 n = 1 n = 2 n = 3 
ka = 2.404 3.832 5.135 6.379 
ka = 5.520 7.016 8.417 9.760 
ka = 8.654 10.173 

For a given k the corresponding natural frequency 

€

ω satisfies

k = ω m T . 
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