
Page 1 of 6 

Version HEMH/4 

EGT3 

ENGINEERING TRIPOS PART IIB 

______________________________________________________________________ 

Tuesday 27 April 2021        1.30 to 3.10 
______________________________________________________________________ 

Module 4C6 

ADVANCED LINEAR VIBRATIONS 

Answer not more than three questions. 

All questions carry the same number of marks. 

The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

Write your candidate number not your name on the cover sheet and at the top of 

each answer sheet.. 

STATIONERY REQUIREMENTS 

Write on single-sided paper. 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Attachment: 4C6 Advanced Linear Vibration data sheet (9 pages)

You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of the 

exam. 

The time taken for scanning/uploading answers is 15 minutes. 

Your script is to be uploaded as a single consolidated pdf containing 

all answers.  
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1 A double headed drum consists of two circular membranes that are mounted at each 

end of a cylinder and coupled via the enclosed air.  The out-of-plane displacement (in 

polar coordinates ) of the top membrane is  and the out-of-plane 

displacement of the lower membrane is .  To a first approximation the coupled 

differential equations of motion of the membranes are 

2 2 2
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where T is the membrane tension per unit length, m is the mass per unit area, and   is a 

constant representing the compressibility of the enclosed air.  Each membrane has radius 

a  and is restrained from motion on the boundary r a= .  The natural frequencies and 

mode shapes of the drum are sought by assuming a separable solution of the form 

1 1 2 2( , ) ( ) ( ) ,          ( , ) ( ) ( )i t i tu r A f r g e u r A f r g e    = = , 

where 1A and 2A are constants.   

(a) Show that a solution of this type is only possible if either 1 2A A= or 1 2A A= − .  

Also show that the functions ( )g   and ( )f r  must satisfy the equations 

2 0g n g + = , 

2 2 2 2( ) 0r f rf k r n f + + − = , 

where n is an integer, and give the two possible expressions for k in terms of  T, m,  , 

and  .  [40%] 

(b) Given that the equation that governs ( )f r  is Bessel’s differential equation, show,

with reference to the data sheet, that two of the natural frequencies are given by

2 2

2 2
1 2

2.404 2.404 2
,       

T T

m a m a m


 

   
= = +   

   
, 

and give the corresponding mode shapes.  Explain physically the two natural frequencies 

that are obtained when 0T → .  [40%] 

(c) Find the lowest natural frequency of the drum for the case in which the lower

membrane is restrained from moving. [20%] 
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2 A string of length L with tension T and mass per unit length m is restrained from 

motion at each end.  The coordinate x is measured along the string from the left-hand end, 

and a spring of stiffness  is attached at the location , as shown in Fig. 2.  The 

lateral displacement of the string is . 

(a) Show that a solution of the form

sin sin                  
( , )

sin ( )sin        

A kx t x L
u x t

B k x L t x L

 

 


= 

− 

satistifies the differential equation of motion and the boundary condition at each end of 

the string providing /k m T=  . [10%] 

(b) The required conditions at x L=  are continuity of displacement, and equilibrium

between the force in the spring and the sum of the resolved component of tension in the

string on each side of the spring. Express these two conditions mathematically, and show

that they will be satisfied providing that

sin sin sin (1 )kT kL k L k L  = − − . [40%] 

(c)

0 =  =

( / ) /n n L T m =

Show that the equation found in part (b) yields the correct solutions for the natural

frequencies of the system for each of the two limiting cases  and , given that

the natural frequencies of a string of length L are  for integer values

of n.     

(d)  =

0 =

 0 =

Given that the natural frequencies obtained for  interlace with those obtained

for , show by graphical means that the natural frequencies obtained for a general

value of  must interlace with those obtained for .  Explain how this result could

have been predicted by the interlacing theorem without the need for any mathematical

analysis.    

(e) How would the predictions of the interlacing theorem change if the spring in Fig. 2

were replaced by a mass attached to the string? [15%] 

Fig. 2 

x 
u(x,t) 

[15%] 

[20%]
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3 The differential equation of motion that governs the lateral displacement ( , )u x t of 

a beam that has both bending and shear deformation has the form 

4 2 4

4 2 2 2
0

u u mEI u
EI m

x t AG x t

  
+ − =

   
, 

where EI is the flexural rigidity, m is the mass per unit length, A is the cross-sectional 

area, G is the shear modulus, and   is a constant that depends on the shape of the cross-

section.   It is found that the vibration of the beam in a particular natural mode has the 

form 

( , ) sin sinu x t px t= , 

where p is the wavenumber of the spatial deformation.  

(a) Derive an expression for the natural frequency of the mode in terms of the

wavenumber p. [10%] 

(b) To incorporate the effect of damping the moduli of the material are replaced by

complex values, so that 0 (1 )EE E i→ +  and 0 (1 )GG G i→ + .  For small values of the

loss factors E  and G , show that the loss factor of the mode of vibration of the beam is

given approximately by

2

2

Em p

m p

  




+
=

+
, 

where  0 0/ ( )mE I AG = . [40%] 

(c) A beam of square cross-section with side length 20 mm has 5 / 6 = .  If the beam

is made of isotropic material with Poisson ratio 0.3 =  calculate the wavelength of the

mode for which the modal loss factor arising from the shear modulus is equal to that

arising from the Young’s modulus for the case G E = . [25%] 

(d) For E G   show that the modal loss factor either increases constantly with

increasing p or decreases constantly with increasing p. [25%]

G
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4 (a) The Fitzwilliam Museum is sending a valuable painting (in its frame) on 

loan for an exhibition in the USA.  They are worried about the effect of vibration on the 

painting during transport.  You have been asked to do vibration measurements on 

the painting for the purposes of modal analysis.  For this application: 

(i) Describe the advantages and disadvantages of using an instrumented hammer

versus an electromagnetic shaker as an excitation device.  [20%] 

(ii) Describe the advantages and disadvantages of using an accelerometer versus

a laser-Doppler vibrometer for response measurement. [20%] 

(iii) Describe two simple checks to test that an accelerometer-based measurement

system is functioning correctly. [10%] 

(b) An impulse hammer and accelerometer are used to investigate the response of a

simple footbridge, which behaves as a simply-supported beam, as sketched in Fig. 4. The 

accelerometer is attached at the mid-span location (Point 2), and impulses are applied at 

the mid-span and at a quarter-point (Point 1).   

(i) On a decibel vertical scale, sketch the expected form of the magnitude of the

frequency-response functions H12 and H22 over a frequency range that includes the 

first three natural frequencies. Label salient features.   

(ii) Sketch the corresponding Nyquist plot for the frequency-response function

H12, labelling salient features. [15%] 

(iii) If N data points are acquired per channel at a sampling frequency of fs describe

how you would use such plots to obtain a best-estimate of the Q-factor of the

fundamental mode of the footbridge.

Fig. 4 

 END OF PAPER 

L/4 L/4 L/4 L/4 

1 2 3 

[20%]

[15%] 
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                                                       Part IIB Data sheet  
Module 4C6 Advanced linear vibration 

 

VIBRATION MODES AND RESPONSE 
Discrete systems Continuous systems 

1.  The forced vibration of an N-degree-of-
freedom system with mass matrix M and 
stiffness matrix K (both symmetric and 
positive definite) is 

€ 

M ˙ ̇ y + K y = f  

where y is the vector of generalised 
displacements and f is the vector of 
generalised forces. 

The forced vibration of a continuous system 
is determined by solving a partial differential 
equation: see p. 4 for examples. 

2.  Kinetic energy 

€ 

T =
1
2

˙ y t M ˙ y 
 

 
 
    Potential energy 

€ 

V =
1
2
ytK y  

 

T =
1
2

˙ u 2dm∫  

where the integral is with respect to mass 
(similar to moments and products of inertia). 
 
See p. 4 for examples. 

3.  The natural frequencies 

€ 

ωn  and  
corresponding mode shape vectors 

€ 

u(n)  
satisfy 

 

€ 

Ku n( ) =ωn
2Mu n( )  . 

The natural frequencies 

€ 

ωn and  mode 
shapes 

€ 

un (x) are found by solving the 
appropriate differential equation (see p. 4) 
and boundary conditions, assuming 
harmonic time dependence. 

4.  Orthogonality and normalisation 

u j( )tMu k( ) =
0,      j ≠ k
1,      j = k
" 
# 
$ % 

 

u j( )tKu k( ) =
0,      j ≠ k
ωn

2,     j = k
# 
$ 
% 

& % 
 

 

 

uj (x ) uk (x) dm∫ =
0,      j ≠ k
1,     j = k
# 
$ 
% & 
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5.  General response 
The general response of the system can be 
written as a sum of modal responses 

€ 

y(t) = q j (t) u
( j)

j=1

N
∑ =Uq(t) 

where U is a matrix whose N columns are 
the normalised eigenvectors 

€ 

u j( ) and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 

 
The general response of the system can be 
written as a sum of modal responses 

€ 

w(x, t) = q j (t) u j (x)
j
∑  

where w(x, t)  is the displacement and 

€ 

q j  can 
be thought of as the “quantity” of the jth 
mode. 

6.  Modal coordinates q satisfy 

€ 

˙ ̇ q + diag(ω j
2)[ ] q = Q 

where 

€ 

y =Uq  and the modal force vector 

 

€ 

Q =Ut f  . 

Each modal amplitude 

€ 

q j (t)  satisfies 

€ 

˙ ̇ q j +ω j
2 q j = Qj  

where 

€ 

Qj = f (x, t) u j (x) dm∫  and 

€ 

f (x, t) is 
the external applied force distribution. 

7.  Frequency response function 
For input generalised force 

€ 

f j  at frequency 
ω and measured generalised displacement 

€ 

yk   the transfer function is 

€ 

H j,k,ω( ) =
yk
f j

=
u j

n( )uk
n( )

ωn
2 −ω2n=1

N
∑    

(with no damping), or 

 
For force F  at frequency ω applied at point  
x, and displacement w  measured at point y, 
the transfer function is 

H x,y,ω( ) =
w
F
=

un(x) un(y)
ωn

2 − ω 2n
∑    

(with no damping), or 

€ 

H j,k,ω( ) =
yk
f j
≈

u j
n( )uk

n( )

ωn
2 + 2iωωnζn −ω

2
n=1

N
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

H x,y,ω( ) =
w
F
≈

un(x) un (y)
ωn

2 + 2iωωnζn −ω
2

n
∑  

(with small damping) where the damping 
factor ζn  is as in the Mechanics Data Book 
for one-degree-of-freedom systems. 

8.  Pattern of antiresonances 
For a system with well-separated resonances 
(low modal overlap), if the factor uj

n( )uk
n( )   

has the same sign for two adjacent 
resonances then the transfer function will 
have an antiresonance between the two 
peaks.  If it has opposite sign, there will be 
no antiresonance. 

 
For a system with low modal overlap, if the 
factor un(x) un(y)   has the same sign for two 
adjacent resonances then the transfer 
function will have an antiresonance between 
the two peaks.  If it has opposite sign, there 
will be no antiresonance. 
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9.  Impulse response  
For a unit impulsive generalised force 

€ 

f j = δ(t) the measured response 

€ 

yk  is given 
by 

€ 

g j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

g j,k,t( ) ≈
u j

n( )uk
n( )

ωnn=1

N
∑ sinωnt e

−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit impulse applied at t = 0 at point x, 
the response at point  y  is 

g x, y, t( ) = un(x) un (y)
ωnn

∑ sinωnt    

for 

€ 

t ≥ 0 (with no damping), or 

g x, y, t( ) ≈ un(x) un(y)
ω nn

∑ sinωnt e
−ωnζnt    

for 

€ 

t ≥ 0 (with small damping). 

10.  Step response  
For a unit step generalised force 

€ 

f j =
0 t < 0
1 t ≥ 0
# 
$ 
% 

 the measured response 

€ 

yk  is 

given by 

€ 

h j,k,t( ) = yk (t) =
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt[ ]  

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h j,k,t( ) ≈
u j

n( )uk
n( )

ωn
2

n=1

N
∑ 1− cosωnt e

−ωnζnt[ ]
   

for 

€ 

t ≥ 0 (with small damping). 

 
For a unit step force applied at t = 0 at point 
x, the response at point y  is 

€ 

h x,y,t( ) =
un (x) un (y)

ωn
2

n
∑ 1− cosωnt[ ]   

for 

€ 

t ≥ 0 (with no damping), or 

€ 

h t( ) ≈ un (x) un (y)
ωn
2

n
∑ 1− cosωnt e

−ωnζnt[ ]   

for 

€ 

t ≥ 0 (with small damping). 

 
 
Rayleigh’s principle for small vibrations 

The “Rayleigh quotient” for a discrete system is

€ 

V
˜ T 

=
ytK y
yt M y

 where 

€ 

y  is the vector of 

generalised coordinates, M is the mass matrix and K is the stiffness matrix.  The equivalent 
quantity for a continuous system is defined using the energy expressions on p. 4. 
If this quantity is evaluated with any  vector

€ 

y , the result will be 

(1)  ≥ the smallest squared frequency; 
(2)  ≤ the largest squared frequency; 

(3)  a  good approximation to

€ 

ωk
2 if 

€ 

y  is an approximation to 

€ 

u k( ).  

 (Formally,  

€ 

V
˜ T 

 is stationary  near each mode.) 
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS 
 

Transverse vibration of a stretched string 
 
Tension P, mass per unit length m, transverse displacement w(x, t) , applied lateral force 
f (x, t)  per unit length. 

 
 Equation of motion Potential energy Kinetic energy 

 m ∂ 2w
∂t2

− P
∂ 2w
∂x2

= f (x, t)  V =
1
2
P

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
m

∂w
∂ t

" 

# 
$ 

% 

& 
' 
2
dx∫  

 
 
 
Torsional vibration of a circular shaft 
 
Shear modulus G, density ρ , external radius a, internal radius b  if shaft is hollow, angular 
displacement θ(x,t) , applied torque f (x, t)  per unit length. 
Polar moment of area is J = π / 2( ) a4 − b4( ) . 
 
 Equation of motion Potential energy Kinetic energy 

 ρJ ∂
2θ

∂t 2
−GJ

∂2θ

∂x2
= f (x, t ) V =

1
2
GJ

∂θ
∂x

# 

$ 
% 

& 

' 
( 
2
dx∫  T =

1
2
ρJ

∂θ
∂ t

$ 

% 
& 

' 

( 
) 
2
dx∫  

 
 
 
Axial vibration of a rod or column 
 
Young’s modulus E, density ρ , cross-sectional area A, axial displacement w(x, t) , applied 
axial force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

− EA
∂ 2w
∂x2

= f (x, t)  V =
1
2
EA

∂w
∂x

" 

# 
$ 

% 

& 
' 
2
dx∫  T =

1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
 
 
Bending vibration of an Euler beam 
 
Young’s modulus E, density ρ , cross-sectional area A, second moment of area of cross-
section I,  transverse displacement w(x, t) , applied transverse force f (x, t)  per unit length. 
 
 Equation of motion Potential energy Kinetic energy 

 ρA ∂
2w
∂t2

+ EI
∂ 4w
∂x4

= f (x,t) V =
1
2
EI

∂2w
∂x2

" 

# 
$ 
$ 

% 

& 
' 
' 

2

dx∫  T =
1
2
ρA

∂w
∂t

# 

$ 
% 

& 

' 
( 
2
dx∫  

 
Note that values of I  can be found in the Mechanics Data Book. 
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VIBRATION MEASUREMENT 
 
Some useful OpAmp circuits for instrumentation 

(Note: j is used instead of i here for 

€ 

−1 for compatibility with the Electrical Data Book.) 
 

– 
 
+ 

Ri 
 
+ 

Rf 
 
+ Vi 

 
+ 

Vo 
 
+ 

 

 
Inverting voltage amplifier 

 

i
i

f
o V

R

R
V −=  

 

– 
 
+ 

Ri Vi 

Vo 

Cf 

Rf 

Ci 

 

 

Inverting voltage amplifier with low-pass and 
high-pass filter 

 

))(( 111 fCfRjCRj

i

i

f
o

ii

V
R

R
V

ω
ω

++
−=  

 

– 
 
+ 

C 
 
+ Q 

 
+ 

Vo 
 
+ 

 

 

Inverting charge amplifier 

 

C
Q

Vo −=  

 

– 
 
+ 

C 
 
+ 

Q 
 
+ 

Vo 
 
+ 

R 
 
+ 

 

 

 

Inverting charge amplifier with high-pass filter 

 

RCj
o C

QV
ω
11

1

+
−=  

 

– 
 
+ 

C 
 
+ Q 

 
+ Vo 

 
+ 

R2 

R1 

 

 

 

Inverting charge amplifier with additional gain 

 

2
21

R

RR
o C

QV
+

−=  
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Some devices for vibration excitation and measurement 
 

Moving coil electro-magnetic shaker 
LDS V101: Peak sine force 10N, internal armature resonance 12kHz. Frequency range 5 – 
12kHz, armature suspension stiffness 3.5N/mm, armature mass 6.5g, stroke 2.5mm, shaker 
body mass 0.9kg 
LDS V650: Peak sine force 1kN, internal armature resonance 4kHz. Frequency range 5 – 
5kHz, armature suspension stiffness 16kN/m, armature mass 2.2kg, stroke 25mm, shaker body 
mass 200kg 
LDS V994: Peak sine force 300kN, internal armature resonance 1.4kHz. Frequency range 5 
– 1.7kHz, armature suspension stiffness 72kN/m, armature mass 250kg, stroke 50mm, 
shaker body mass 13000kg 
 
Piezo stack actuator 
FACE PAC-122C 
Size 2×2×3mm, mass 0.1g, peak force 12N, stroke 1µm, u 
nloaded resonance 400kHz 
 
Impulse hammer 
IH101 
Head mass 0.1kg, hammer tip stiffness 1500kN/m, force transducer sensitivity 4pC/N, 
internal resonance 50kHz 
 
Piezo accelerometer 
B&K4374 Mass 0.65g sensitivity 1.5pC/g, 1-26kHz, full-scale range +/-5000g 
DJB A/23 Mass 5g, sensitivity 10pC/g, 1-20kHz, full-scale range +/-2000g 
B&K4370 Mass 10g sensitivity 100pC/g, 1-4.8kHz,  full-scale range +/-2000g 
 
MEMS accelerometer 
ADKL202E 
265mV/g 
Full scale range +/- 2g 
DC-6kHz 
 
Laser Doppler Vibrometer 
Polytec PSV-400 Scanning Vibrometer 
Velocity ranges 2/10/50/100/1000 [mm/s/V] 
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VIBRATION DAMPING 
 

Correspondence principle 
 
For linear viscoelastic materials, if an undamped problem can be solved then the 
corresponding solution to the damped problem is obtained by replacing the elastic moduli 
with complex values (which may depend on frequency): for example Young’s modulus 

€ 

E → E(1+ iη) .  Typical values of E and 

€ 

η for engineering materials are shown below: 
 
 

 
 
 
For a complex natural frequency  ω : 
 

 ω !ω n 1+ iζ n( ) !ω n 1+ iηn / 2( ) !ω n 1+ i / 2Qn( )  
 

and 
 

 ω
2 !ω n

2 1+ iηn( ) !ω n
2 1+ i /Qn( )
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Free and constrained layers 
For a 2-layer beam: if layer j has Young’s modulus 

€ 

E j , second moment of area 

€ 

I j  and 
thickness 

€ 

h j , the effective bending rigidity EI  is given by: 

  EI = E1I1 1 + eh3 + 3 1 + h( )2
eh

1 + eh
! 

" 
# 

$ 

% 
&  

where 

  e = E2
E1
, h = h2

h1
 . 

For a 3-layer beam, using the same notation, the effective bending rigidity is 

  
EI = E1

h1
3

12
+ E2

h2
3

12
+ E3

h3
3

12
− E2

h2
2

12
h31− d
1+ g

" 

# 
$ 

% 

& 
' + E1h1d2 + E2h2 h21− d( )2

+E3h3 h31− d( )2 − E2h2
2

h21 − d( ) + E3h3 h31− d( )" 
# $ 

% 
& ' 
h31− d
1+ g

" 

# 
$ 

% 

& 
' 

  

where   d =
E2h2 h21 − h31 / 2( ) + g E2h2h21 + E3h3h31( )
E1h1 + E2h2 / 2 + g E1h1 + E2h2 + E3h3( )

, 

 h21 =
h1 + h2
2

, h31 =
h1 + h3
2

+ h2 , g = G2
E3h3h2p2

, 

€ 

G2 is the shear modulus of the middle layer, and p   = 2π / wavelength( ) , i.e. “wavenumber”. 
 
Viscous damping, the dissipation function and the first-order method 
 
For a discrete system with viscous damping, then Rayleigh’s dissipation function 

€ 

F =
1
2

˙ y t C ˙ y  is equal to half the rate of energy dissipation, where 

€ 

˙ y  is the vector of 

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix. 
 
If the system has mass matrix M and stiffness matrix K, free motion is governed by 
 
  

€ 

M ˙ ̇ y + C ˙ y + K y = 0. 

Modal solutions can be found by introducing the vector 

€ 

z =
y
˙ y 
" 

# 
$ 
% 

& 
' .  If 

€ 

z = ueλt  then 

€ 

u, λ  are the 

eigenvectors and eigenvalues of the matrix 
 

  

€ 

A =
0 I

−M−1K −M−1C
# 

$ 
% 

& 

' 
(  

 
where 0 is the zero matrix and I is the unit matrix. 
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THE HELMHOLTZ RESONATOR 
 

A Helmholtz resonator of volume V with a neck of effective length L and cross-sectional area 
S has a resonant frequency 
 

 

€ 

ω = c S
VL

 

 
where c is the speed of sound in air. 
 
The end correction for an unflanged circular neck of radius a is 0.6a. 
 
The end correction for a flanged circular neck of radius a is 0.85a. 
 
 

VIBRATION OF A MEMBRANE 

If a uniform plane membrane with tension T and mass per unit area m undergoes small 
transverse free vibration with displacement 

€ 

w , the motion is governed by the differential 
equation 
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in terms of Cartesian coordinates x, y or 
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in terms of plane polar coordinates 

€ 

r,θ . 
 
For a circular membrane of radius a the mode shapes are given by 
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where 

€ 

Jn  is the Bessel function of order n and k is determined by the condition that 

€ 

Jn (ka) = 0.  The first few zeros of 

€ 

Jn ’s are as follows: 

 n = 0 n = 1 n = 2 n = 3 
ka = 2.404 3.832 5.135 6.379 
ka = 5.520 7.016 8.417 9.760 
ka = 8.654 10.173   

For a given k the corresponding natural frequency 

€ 

ω  satisfies 

 k = ω m T . 




