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EGT3 

ENGINEERING TRIPOS PART IIB 

______________________________________________________________________ 

Tuesday 26 April 2022        2 to 3.40 

______________________________________________________________________ 

Module 4C6 

ADVANCED LINEAR VIBRATIONS 

Answer not more than three questions. 

All questions carry the same number of marks. 

The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

Write your candidate number not  your name on the cover sheet. 

STATIONERY REQUIREMENTS 

Single-sided script paper 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Attachment: 4C6 Advanced Linear Vibration data sheet (9 pages) 

Engineering Data Book  

10 minutes reading time is allowed for this paper at the start of 

the exam. 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 

You may not remove any stationary from the Examination Room. 
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1 An impulse test is to be conducted on a floor of a building, for which the first 

three vibration modes are expected to be as shown in the floor plans (seen from above) 

of Fig. 1. The impulse hammer consists of a falling mass of 3 kg that slides smoothly 

down a guide rail to strike the floor before rebounding and being restrained by a catch 

mechanism.    

(a) Using sketches to illustrate your answer, estimate the duration of the impulse

required to excite the first three modes whilst minimising any excitation of higher

modes. [20%] 

(b) Determine the corresponding stiffness of the hammer tip. [10%] 

(c) The force transducer has a sensitivity of 0.2 mV/N. If the hammer is allowed to

fall from a height of 1.5 m, estimate the peak force of the impulse and hence determine

the expected peak output signal from the hammer. [15%] 

(d) Explain why 30 Hz would be a suitable sampling frequency. [5%] 

(e) Sketch and explain the form of the magnitude of the transfer function that might

be measured by attaching an accelerometer to the floor at point A (shown in

Fig. 1) and applying an impulse at point B. [20%] 

(f) The Q-factor of Mode 3 is thought to be approximately 20. Using a sampling

frequency of 30 Hz, estimate the recording time required to measure the transfer

function in part (e) and thereby confirm the Q-factor. Explain why this might pose a

problem and suggest an alternative method to avoid this. [30%] 

Mode 1 Mode 2 Mode 3 

      f1 = 4.9 Hz       f2 = 5.2 Hz f3 = 5.6 Hz 

Figure 1 

A 

B 

A 

B 

A 

B 
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2 The differential equation governing the transverse displacement u of an undamped 

string with variable tension has the form 

2

2
( ) 0,

u u
T x m

x x t

   
     

where the coordinate x is measured along the string, T(x) is the tension at x, and m is the 

mass per unit length.  This equation is to be applied to a hanging chain of length L, the 

top end of which is attached to the ceiling and the lower end of which is free and 

suspended above the floor; the coordinate x is measured upwards, with x = 0 at the 

lower end of the chain. 

(a) By assuming harmonic motion of frequency   and making the substitution

z x show that the differential equation that governs the motion of the chain can be 

written in the form 

2 2

2

1 4
0

u u
u

z z gz

 
  


. 

[20%] 

(b) This is Bessel’s differential equation, as given in the data sheet for the case of

n = 0.

(i) Write down the two possible solutions to the equation and explain why one

of the solutions cannot contribute to the response for the stated boundary

conditions. [10%] 

(ii) By applying the boundary condition at the top of the chain show that the

first natural frequency is given by 1 1.202 /g L  , and compare this result with 

the natural frequency of a hinged rigid rod having the same mass per unit length 

as the chain. [10%] 

(c) By considering the shape of the Bessel function of order zero, show that the nth

mode shape of the chain has n nodes, including the node at the ceiling. [20%] 

(d) The chain is now restrained from moving at a point which is a distance a below

the ceiling.  Show that the natural frequencies of the upper part of the chain (between

the restraint and the ceiling) are given by the solutions to the equation

0 0 0 0J (2 / )Y (2 ( ) / ) J (2 ( ) / )Y (2 / )L g L a g L a g L g      . [25%] 

(e) Discuss the situation that would arise were the constraint applied at a L . [15%] 
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3 A cylindrical vessel of radius  and volume V  has a hole of radius  in the top 

circular plate, as shown in Figure 2.  The bottom circular plate has mass M and is 

constrained to slide axially within the cylinder, being attached to the top plate by a 

spring of stiffness K.  The upwards displacement of the bottom plate is , and the air 

surrounding the top circular hole has a Helmholtz displacement .   

(a) By making use of the relation 2p c    , where c is the speed of sound, show

that the equations of motion of the system have the form 

2 2 2
21 11 1

2 2 2
2 221 2

/ /0 0

0 0/ /

a c A V c A A VM x x

M x xc A A V c A V K

 

 

       
                 

, 

where aM is the mass of air attributed to the hole in the top plate, and 1A  and 2A  are 

respectively the areas of the top hole and the bottom plate.   Show that for 2 0x  the 

Helmholtz natural frequency predicted by this equation agrees with the formula on the 

data sheet.  [35%] 

(b) The density of air is 31.21 kg/m  and the speed of sound is 340 m/sc  . The 

system has dimensions 3
1 21.5 cm,  10 cm,  0.01 ma a V   , and the mass and 

stiffness associated with the bottom plate are 40.2 kg,  5 10  N/mM K   .  Find the 

two natural frequencies of the system.  [35%] 

(c) Find the natural frequencies for each of the two constrained cases: (i) 1 0x  , (ii)

2 0x  .  Show that these results are consistent with the interlacing theorem. [20%] 

(d) Without making further detailed calculations sketch a graph of the two natural

frequencies of the system as a function of K, with K ranging from the initial value to a

very large value. Sketch a second graph of the natural frequencies plotted as a function

of 1a , with 1a  decreasing from the initial value to zero. [10%] 

Figure 2

x1

x2

2a2 

M 

K 

2a1 

2
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4 When allowance is made for warping of the cross-section, the torsional potential 

energy of a beam of length L has the form 

2 2
2

2
0 0

( / 2) d ( / 2) d

L L

V E x GJ x
xx

 


   
         

  , 

where the coordinate x is measured along the beam, E and G are the material constants, 

 is the warping constant,  J  is the torsional constant, and ( , )x t  is the rotation of the

cross-section at x.   The polar moment of inertia of the beam per unit length is I .

(a) If the beam is clamped at both ends then the mode shapes have the form sin kx .

Specify the values that k can take to satisfy the boundary conditions, and hence use

Rayleigh’s quotient to find the nth natural frequency of the beam. [30%] 

(b) The effect of damping is to be modelled by using the correspondence principle,

with loss factors E  and G  associated respectively with the material moduli E and G

( G E  ).  Derive an expression for the loss factor n  of the nth mode of vibration.

Does the modal loss factor increase or decrease with increasing n? [30%] 

(c) Show that the decay of vibration in mode n is governed by the factor

exp( / 2)n nt  .   Discuss the dependency of the rate of decay on n. [25%] 

(d) Repeat parts (b) and (c) for the case in which warping does not occur, i.e.  0  .  [15%]

END OF PAPER
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Part IIB Data Sheet

Module 4C6 Advanced Linear Vibration

1 Vibration Modes and Response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 2 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 2 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 2) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)TMu(k) =

{
0 j 6= k
1 j = k

u(j)TKu(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k
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6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑
j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑
j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.

7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑
n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑
n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑
n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑
n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.
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10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑
n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑
n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑
n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑
n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

4C6 data sheet 2021 Page 3



1.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 2.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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2 Governing equations for continuous systems

2.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

2.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

2.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

2.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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Some devices for vibration excitation and measurement 

Moving coil electro-magnetic shaker 
LDS V101: Peak sine force 10N, internal armature resonance 12kHz. Frequency range 5 – 
12kHz, armature suspension stiffness 3.5N/mm, armature mass 6.5g, stroke 2.5mm, shaker 
body mass 0.9kg 
LDS V650: Peak sine force 1kN, internal armature resonance 4kHz. Frequency range 5 – 
5kHz, armature suspension stiffness 16kN/m, armature mass 2.2kg, stroke 25mm, shaker body 
mass 200kg 
LDS V994: Peak sine force 300kN, internal armature resonance 1.4kHz. Frequency range 5 
– 1.7kHz, armature suspension stiffness 72kN/m, armature mass 250kg, stroke 50mm,
shaker body mass 13000kg

Piezo stack actuator 
FACE PAC-122C 
Size 2×2×3mm, mass 0.1g, peak force 12N, stroke 1µm, u
nloaded resonance 400kHz 

Impulse hammer 
IH101 
Head mass 0.1kg, hammer tip stiffness 1500kN/m, force transducer sensitivity 4pC/N, 
internal resonance 50kHz 

Piezo accelerometer 
B&K4374 Mass 0.65g sensitivity 1.5pC/g, 1-26kHz, full-scale range +/-5000g 
DJB A/23 Mass 5g, sensitivity 10pC/g, 1-20kHz, full-scale range +/-2000g 
B&K4370 Mass 10g sensitivity 100pC/g, 1-4.8kHz,  full-scale range +/-2000g 

MEMS accelerometer 
ADKL202E 
265mV/g 
Full scale range +/- 2g 
DC-6kHz

Laser Doppler Vibrometer 
Polytec PSV-400 Scanning Vibrometer 
Velocity ranges 2/10/50/100/1000 [mm/s/V] 
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VIBRATION DAMPING 

Correspondence principle 

For linear viscoelastic materials, if an undamped problem can be solved then the 
corresponding solution to the damped problem is obtained by replacing the elastic moduli 
with complex values (which may depend on frequency): for example Young’s modulus 

€

E → E(1+ iη) .  Typical values of E and 

€

η for engineering materials are shown below: 

For a complex natural frequency  ω :

 ω !ω n 1+ iζ n( ) !ω n 1+ iηn / 2( ) !ω n 1+ i / 2Qn( )

and 

ω 2 !ω n
2 1+ iηn( ) !ω n

2 1+ i /Qn( )
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Free and constrained layers 
For a 2-layer beam: if layer j has Young’s modulus 

€

E j , second moment of area 

€

I j  and 
thickness 

€

h j , the effective bending rigidity EI  is given by: 

EI = E1I1 1 + eh3 + 3 1 + h( )2
eh

1 + eh
! 

" 
# 

$ 

% 
&  

where 

e = E2
E1
, h = h2

h1
 .

For a 3-layer beam, using the same notation, the effective bending rigidity is 

EI = E1
h1
3

12
+ E2

h2
3

12
+ E3

h3
3

12
− E2

h2
2

12
h31− d
1+ g

" 

# 
$ 

% 

& 
' + E1h1d2 + E2h2 h21− d( )2

+E3h3 h31− d( )2 − E2h2
2

h21 − d( ) + E3h3 h31− d( )" 
#$ 

% 
& ' 
h31− d
1+ g

" 

# 
$ 

% 

& 
' 

where   d =
E2h2 h21 − h31 / 2( ) + g E2h2h21 + E3h3h31( )
E1h1 + E2h2 / 2 + g E1h1 + E2h2 + E3h3( )

,

h21 =
h1 + h2
2

, h31 =
h1 + h3
2

+ h2 , g = G2
E3h3h2p2

,

€

G2 is the shear modulus of the middle layer, and p   = 2π / wavelength( ) , i.e. “wavenumber”.

Viscous damping, the dissipation function and the first-order method 

For a discrete system with viscous damping, then Rayleigh’s dissipation function 

€

F =
1
2

˙ y t C ˙ y  is equal to half the rate of energy dissipation, where

€

˙ y  is the vector of 

generalised velocities (as on p.1), and C is the (symmetric) dissipation matrix. 

If the system has mass matrix M and stiffness matrix K, free motion is governed by 

€

M ˙ ̇ y + C ˙ y + K y = 0. 

Modal solutions can be found by introducing the vector 

€

z =
y
˙ y 
" 

# 
$ 
% 

& 
' .  If 

€

z = ueλt  then

€

u, λ  are the 

eigenvectors and eigenvalues of the matrix 

€

A =
0 I

−M−1K −M−1C
# 

$ 
% 

& 

' 
(  

where 0 is the zero matrix and I is the unit matrix. 
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THE HELMHOLTZ RESONATOR 

A Helmholtz resonator of volume V with a neck of effective length L and cross-sectional area 
S has a resonant frequency 

€

ω = c S
VL

where c is the speed of sound in air. 

The end correction for an unflanged circular neck of radius a is 0.6a. 

The end correction for a flanged circular neck of radius a is 0.85a. 

VIBRATION OF A MEMBRANE 

If a uniform plane membrane with tension T and mass per unit area m undergoes small 
transverse free vibration with displacement 

€

w , the motion is governed by the differential 
equation 

€

T ∂2w
∂x2

+
∂2w
∂y2

# 

$ 
% % 

& 

' 
( ( = m

∂2w
∂t2

   

in terms of Cartesian coordinates x, y or 

€

T ∂2w
∂r2

+
1
r
∂w
∂r

+
1
r2
∂2w
∂θ2

$ 

% 
& & 

' 

( 
) ) = m

∂2w
∂t2

in terms of plane polar coordinates 

€

r,θ . 
 
For a circular membrane of radius a the mode shapes are given by 

  

€

sin
cos

" 
# 
$ 
nθ Jn (kr), n = 0,1,2,3 

where 

€

Jn  is the Bessel function of order n and k is determined by the condition that 

€

Jn (ka) = 0.  The first few zeros of 

€

Jn ’s are as follows: 

n = 0 n = 1 n = 2 n = 3 
ka = 2.404 3.832 5.135 6.379 
ka = 5.520 7.016 8.417 9.760 
ka = 8.654 10.173 

For a given k the corresponding natural frequency 

€

ω satisfies

k = ω m T . 
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