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 ENGINEERING TRIPOS PART IIB 

______________________________________________________________________ 

 

 Wednesday 26 April 2023        2.00 to 3.40 

______________________________________________________________________ 

 

 

 Module 4C7 

 

 RANDOM AND NON-LINEAR VIBRATIONS 

 

 Answer not more than three questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 

 Write your candidate number not  your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Attachment: 4C7 Random and Non-linear Vibrations data sheet (4 pages). 

Engineering Data Book  

 

 

10 minutes reading time is allowed for this paper at the start of 

the exam. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 

 

You may not remove any stationary from the examination room. 
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1  The linear oscillator in Fig. 1 has a mass  m,  supported by a spring of stiffness  k  

and light damping  c.  The displacement of the oscillator at time  t  is  y(t).  The 

oscillator can be excited by force  f(t)  or by displacement of its base  x(t). 

(a)  If the displacement input is zero and the force input is white noise, with spectral 

density: 

 

calculate the mean square displacement of the mass  E[y2].  Hence show that the mean 

square bandwidth    is given by: 

 = n 

where   is the damping ratio and  n  is the undamped natural frequency of the 

oscillator.  [30%] 

 

 

  The input force is now set to zero and the base is excited by a displacement  x(t)  

with spectral density 

 

where S1 and 0 are positive, real-valued constants. Since the damping is light, it may 

be assumed that the response of the oscillator is essentially in a narrow-band of 

frequencies close to the natural frequency  n. 

(b) Starting with the Rayleigh distribution for the probability of peaks of a narrow 

band process exceeding level a, where 0a : 
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show that the probability of a peak exceeding level  a  is: 
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[20%] 

(c) Use the mean square bandwidth to estimate the mean square velocity  ][ 2yE  .   [30%] 

(d) Using the results of (b) and (c), derive an approximate expression for the amount 

of viscous damping  c  required in order to achieve a given value  p  for the probability 

that a peak in the velocity  )(ty   exceeds a given level  v. [20%] 
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Fig.  1 
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2 Figure 2 shows a simple single degree-of-freedom model of a vehicle which is 

moving at constant speed over a rough road surface. Point P in the tyre follows 

displacement profile y(t).  The vehicle has mass  m  and suspension of linear stiffness  k  

and viscous damping  c.  The displacement of the vehicle body is  z(t). 

(a) The autocorrelation function of the road profile is measured to be 

 ( )



b

AeRyy

−
=  −   

where  A  and  b  are constants.  Show that the road profile spectral density observed by 

the moving vehicle is 

   [40%] 

 

(b) Calculate the spectral density  Sff () of the dynamic tyre force (the force in the 

spring and damper).   [20%] 

(c) Assuming the dynamic tyre force is a narrow-band process, estimate its mean 

square value. [20%] 

(d) Write an expression for the probability that a peak in the dynamic tyre force 

exceeds the value f1. [20%] 

 

Fig.  2 
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3 A nonlinear undamped single degree-of-freedom vibratory system of mass m has 

a symmetrical force-displacement backlash characteristic of width 2b and linear 

response sections of slope  as shown in Fig. 3. The system is sinusoidally driven at an 

angular frequency  and the response amplitude is a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  

 

(a) Determine the maximum value of the restoring force in terms of the parameters 

shown.     [10%] 

(b)   Sketch the input and output waveforms when the system is sinusoidally driven at 

an angular frequency  with a response amplitude a > 2b. [30%] 

(c)  Determine the Describing Function for a sinusoidal input corresponding to a 

response amplitude a > 2b.   [60%] 

k(x) 

x 

  

-b b 
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4 A nonlinear system is characterised by the equation below where  can be 

considered a small positive parameter ( <   << 1): 

 

( ) 03 =+−− xxxx   . 

 

(a)  Show that the origin is an equilibrium point and determine its type and stability. [20%] 

(b)  Sketch the behaviour of the system in the phase plane showing the limit cycle. [20%]   

(c)  Use the method of perturbation to obtain an estimate of the steady-state 

amplitude of the limit cycle response to first order in . [60%] 

 

 

 

 

 

 

 

 

 

 

 

END OF PAPER 
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PART IIB Module 4C7 

Random and Non-linear Vibrations Data Sheet 

 

 

Part One: Random Vibration 

 

Gaussian Probability Distribution 
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Crossing rates: general case 
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Crossing rates: Gaussian case 
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Peak distribution for a narrow band process: general case 
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Peak distribution for a narrow band process: Gaussian case 
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Probability of failure after duration T 
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Spectral relations 
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Input-output relations 
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Calculation of mean-square response integrals 
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White noise input: standard form 
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White noise input: scaled form 
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Fatigue Damage 
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End of Part One 
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Part Two: Nonlinear Vibration 

 

Describing functions  

 

System described by the undamped Duffing equation subject to harmonic forcing:  

   

taxxpx ωµ cos32 =++ɺɺ  

 
tx ωα cos≈  

 

Describing Function = 
4
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Classification of equilibrium or singular points 
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Eigenvalues of matrix A Type of singular point 

Both real and positive Unstable node 

Both real and negative Stable node 

Both real but opposite sign Saddle point 

Both complex with real part = 0 Centre 

Both complex with real part > 0 Unstable focus 

Both complex with real part < 0 Stable focus 

 

T=tr(A) and D=det(A) 

 

Conditions on T and D Type of singular point 

0<D  Saddle point 

0,0 => TD   Centre 

02,0 <<> TDD -  Stable focus 

DTD 20,0 <<>   Unstable focus 

DTD 2,0 >>   Unstable node 

DTD 2,0 −<>    Stable node 
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Classification of equilibrium or singular points for conservative systems: 

 

(nonlinear system)   ExVxm =+ )(
2

1 2
ɺ  

 

Sign of )(xV ′′  Type of singular point 

positive Centre 

negative Saddle point 

 

 

End of Part Two 
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