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Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.
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1 A polymer water tank is a thin-walled open-ended circular cylinder of radius 𝑅 and
wall thickness 𝑤. The tank is filled with water (density 𝜌) to a height 𝐻, as shown in
cross-section in Fig. 1. The hydrostatic pressure

𝑝 = 𝜌𝑔(𝐻 − 𝑧),

where 𝑔 is the acceleration due to gravity, acts on the wall of the cylinder at a height 𝑧 from
the base. Within the tank wall, let directions 1, 2 and 3 correspond to hoop, longitudinal
and through-thickness, respectively. Infinitesimal deformations can be assumed.

(a) The tank wall is modelled as an isotropic linear elastic solid with Young’s modulus
𝐸 and Poisson’s ratio 𝜈. The constitutive equations are

𝜀𝑖 𝑗 =
1 + 𝜈

𝐸
𝜎𝑖 𝑗 −

𝜈

𝐸
𝜎𝑘𝑘𝛿𝑖 𝑗 .

(i) Neglecting end effects and self-weight, explain why it can be assumed that
the only non-zero stress component in the tank sidewall is the hoop stress 𝜎11(𝑧).
Hence, write down an expression for the total elastic strain energy in the tank sidewall
as a function of the hoop strain 𝜀11(𝑧). The base of the tank can be neglected. [15%]

(ii) Using the method of minimum potential energy, derive an expression for the
hoop strain 𝜀11(𝑧) in the tank sidewall. [25%]

(b) To capture time dependent deformation of the polymer tank, a linear viscoelastic
constitutive model is now used. Assuming Poisson’s ratio to be time-independent, the 3D
viscoelastic constitutive equations are

𝜀𝑖 𝑗 (𝑡) = (1 + 𝜈)
𝑡∫

0

𝐽𝑐 (𝑡 − 𝜏)
𝜕𝜎𝑖 𝑗 (𝜏)

𝜕𝜏
𝑑𝜏 − 𝜈

𝑡∫
0

𝐽𝑐 (𝑡 − 𝜏) 𝜕𝜎𝑘𝑘 (𝜏)
𝜕𝜏

𝛿𝑖 𝑗 𝑑𝜏,

where 𝐽𝑐 (𝑡) is the creep compliance.

(i) The uniaxial response of the material is given by the relationship

¤𝜀 =
¤𝜎
𝐸

+ 𝜎

𝜂
,

where 𝐸 and 𝜂 are material constants, and ¤𝜀 and ¤𝜎 are the strain and stress rates,
respectively. Derive expressions for the relaxation modulus 𝐸𝑟 (𝑡) and the creep
compliance 𝐽𝑐 (𝑡). [20%]

(ii) The tank is filled with water at a constant rate ¤𝐻, such that 𝐻 = ¤𝐻𝑡. Derive
expressions for the rate of change of the tank radius, ¤𝑅, and the rate of change of the
wall thickness, ¤𝑤, at a particular height 𝑧. End effects and the influence of the base
should be neglected. [40%]
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Fig. 1
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2 (a) A body has volume 𝑉 and surface 𝑆 with outward unit normal vector n, and
undergoes infinitesimal deformations subject to external tractions t𝑒 and body forces b.
Using index notation, prove the following.

(i) The principle of virtual work∫
𝑉
𝝈 : 𝛿𝜺 𝑑𝑉 −

∫
𝑆

t𝑒 · 𝛿u 𝑑𝑆 −
∫
𝑉

b · 𝛿u 𝑑𝑉 = 0

is equivalent to the equilibrium relationships 𝜎𝑖 𝑗 , 𝑗 + 𝑏𝑖 = 0 and 𝑡𝑒
𝑖
= 𝜎𝑖 𝑗𝑛 𝑗 . [25%]

(ii) The balance of moments on the body∫
𝑆

x × t𝑒 𝑑𝑆 +
∫
𝑉

x × b 𝑑𝑉 = 0,

where x is the position vector, requires symmetry of the stress tensor, 𝜎𝑖 𝑗 = 𝜎𝑗𝑖. [25%]

(b) Consider the decomposition of a second-order tensor B such that B = RU = VR,
where R is orthogonal and U and V are symmetric positive-semidefinite.

(i) Prove that such a decomposition exists for all tensors B. Prove that, when
det B > 0, R is a proper orthogonal tensor, and U and V are symmetric positive-
definite tensors. [25%]

(ii) Show the significance of this decomposition for defining strain measures in
terms of the deformation gradient F. [10%]

(iii) Given that 𝑑x = F𝑑X, for the decompositions F = RU = VR provide
geometric interpretations of R, U and V, supported by sketches. [15%]
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3 (a) (i) The deformation of a body is given by

𝝓(X) =

𝑥1
𝑥2
𝑥3

 =

𝑝𝑋1 + 𝑎

𝑞𝑋2 + 𝑏

𝑟𝑋3 + 𝑐

 ,
where 𝑝, 𝑞, 𝑟, 𝑎, 𝑏 and 𝑐 are constants. Calculate the deformation gradient F and
give the conditions on the constants such that the deformation is admissible. [10%]

(ii) Consider a unit cube that deforms according to

𝑥1 = 𝑋1 + 𝛽𝑡2𝑋2, 𝑥2 = 𝑋2, 𝑥3 = 𝑋3 + 3𝑋2,

where 𝛽 is a parameter and 𝑡 is time. Calculate the deformation gradient and prove
that the volume of the cube is preserved. [10%]

(b) Consider the motion of a body given by

𝝓(X, 𝑡) = R(𝑡)X + c(𝑡),

where R(𝑡) is a rotation tensor.

(i) What type of motion does this expression describe? [10%]

(ii) Give an expression for the inverse motion, i.e. an expression for X in terms of
the spatial coordinates x. [10%]

(iii) Give expressions for the material velocity field V(X, 𝑡) and for the spatial
velocity field v(x, 𝑡). [20%]

(c) The first Piola–Kirchhoff stress P is work-conjugate to the deformation gradient F,
i.e. P = P : ¤F, where P is the stress power (per unit reference volume).

(i) For a body with a pre-stress (P ≠ 0), prove that the stress power is zero for a
time-varying rigid body motion. [10%]

(ii) Find the stress measure that is work-conjugate to the stretch U (recalling that
F = RU, where R is orthogonal and U is symmetric).
Hint: PF𝑇 is symmetric. [30%]

END OF PAPER
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ENGINEERING TRIPOS PART IIB 

Module 4C9 Continuum Mechanics 

Data sheet 

Indicial notation 

A repeated index implies summation  

 i ia=a e  i ia b =a b   

= c a b  can be written as  i ijk j kc e a b=  

𝑨 = 𝒂 ⊗ 𝒃  can be written as 𝐴𝑖𝑗 = 𝑎𝑖𝑏𝑗  

Kronecker delta:    ij =1 for i = j,  and ij = 0 for i j   

Note that   ij i j = e e  

Permutation symbol:   1ijke =   when , ,i j k  are in cyclic order 

   1ijke = −   when , ,i j k  are in anti-cyclic order 

   0ijke =   when any indices repeat 

e −   identity:    ijk ipq jp kq jq kpe e    = −  

grad ,i i  =  = e  

div ,i iv=  =v v  

curl ,ijk k j ie v= =v v e  

Gauss’s theorem (the divergence theorem): 

∫
𝜕𝐴𝑖𝑗

𝜕𝑥𝑗
𝑉

𝑑𝑉 = ∮ 𝐴𝑖𝑗𝑛𝑗

𝑆

𝑑𝑆 

Stokes’s theorem: 

∫ 𝑒𝑖𝑗𝑘

𝜕𝐴𝑝𝑘

𝜕𝑥𝑗
𝑆

𝑛𝑖𝑑𝑆 = ∮ 𝐴𝑝𝑘

𝐶

 𝑑𝑥𝑘 
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Isotropic linear elasticity 

Equilibrium:   𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  ,   𝜎𝑖𝑗 = 𝜎𝑗𝑖 

Compatibility:  휀𝑖𝑗,𝑘𝑝 + 휀𝑘𝑝,𝑖𝑗 − 휀𝑝𝑗,𝑘𝑖 − 휀𝑘𝑖,𝑝𝑗 = 0 

Constitutive relationships: 𝜎𝑖𝑗 =
𝐸

(1+𝜈)
휀𝑖𝑗 +

𝜈𝐸

(1+𝜈)(1−2𝜈)
휀𝑘𝑘𝛿𝑖𝑗    

Lame’s constants:    𝜇 = 𝐺 =
𝐸

2(1+𝜈)
    ,   𝜆 =

𝜈𝐸

(1+𝜈)(1−2𝜈)
  

The strain energy density 𝑈 is given by:   𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
 

At equilibrium, the potential energy Π is minimised. Hence, for any small 

kinematically admissible perturbation 𝛿𝑢𝑖 : 

𝛿Π = ∫ 𝛿𝑈𝑑𝑉

𝑉

− ∫ 𝑡𝑖
𝑒𝛿𝑢𝑖𝑑𝑆

𝑆

− ∫ 𝑏𝑖𝛿𝑢𝑖𝑑𝑉 = 0

𝑉

 

Definitions:  𝜎𝑖𝑗 is the stress tensor, 휀𝑖𝑗 is the infinitesimal strain tensor, 𝑏𝑖 is the body 

force vector, 𝑡𝑖
𝑒  is the external traction vector and 𝑢𝑖 is the displacement vector. 

Isotropic linear viscoelasticity 

Relaxation modulus, 𝐸𝑟(𝑡): 

if   ε(𝑡) = ε0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  σ(𝑡) = ε0𝐸𝑟(𝑡) 

Creep compliance, 𝐽𝑐(𝑡):  

if   σ(𝑡) = σ0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  ε(𝑡) = σ0𝐽𝑐(𝑡) 

The Laplace transforms of 𝐸𝑟(𝑡) and 𝐽𝑐(𝑡) are related by:   �̅�𝑟(𝑠) 𝐽�̅�(𝑠) =
1

𝑠2 

Boltzmann superposition principle in 1D:  

𝜎(𝑡) = ∫
∂휀(𝜏)

∂τ
𝐸𝑟(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

휀(𝑡) = ∫
∂𝜎(𝜏)

∂τ
𝐽𝑐(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Correspondence principle:  in the Laplace domain, the viscoelastic solution 

corresponds to the elastic solution, with the substitution  𝐸 → 𝑠�̅�𝑟(𝑠) ,   𝜈 → 𝑠�̅�𝑟(𝑠)  

(for any time-dependent moduli).   


