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4C9 Continuum Mechanics Crib: 2025

The beam is slender, so Euler-Bernoulli kinematics is a good model: rotation of
planar cross sections. If the transverse deflection of the centre line is w(x), the
anti-clockwise rotation of the cross-section ¢(x1) = dw/dz;, and the displace-
ment of a material point:

u(x1,22) = w(xy)ey — ¢(x1)r2e1 = w (1) €2 —

Superimpose a uniform (across the beam cross section at any point z;) axial
deformation due to the components of the external loading in this direction:

u (Il, .%'2) =h (ZL’I) (S5}

The total displacement is:

dw (z1)

X1

u (1’1,1‘2) =w (ZL’l) ey + h (l’l) — To| €1

The kinematics model gives zero shear strain. The beam is slender, so 092699 &~ 0
and o33e33 ~ 0. Hence:

1 1 1
U= 50@'&‘3‘ = 5011811 = §E($1)531

Method of minimum PE, noting that the properties are spatially varying, E(x;)
and p(z1). At equilibrium:

5H:/5UdV—/tf5uZdS—/bZ&LZdV:O

v s v
First term: Using displacements

ou
€11 = 8_901 = —w"(z1)xs + W (21)

1
U= §E(371) [w" (z1)%23 + W (21)? — 20 (21)w" (21)22]
Variation in U with arbitrary perturbation of w and h:

ou ., U,
= aw//éw +%6h

= B(xq) [w" (z1)a30w” + 1/ (21)0h — w" (z1) 2200 — B (21)z200"]

oUu

Integrate over the beam volume, noting deformation is uniform across the width
B at any point:
L DJ/2

/ SU dV = / / E(x1)[w” (1) 250w" + W (21)6R

1% 0 —D/2
— w"(z1)x20h — W (x1)x20w"| B dxg diy



Integrate with respect to x5 first. Note that:

D//Z(...)d@:(...)p 72(«~)x2d:1:2:0 D//z(...)xgdxzz(...)ll)_;
—D/2 ~D/2 -D/2

And let I = BD3/12 and A = BD:
/5U dv = /E(l‘l) [Tw" (z1)6w" + AR (21)6h'] dy
Integrate by parts (not forgetting that E is a function of z;):

L
/ oU dV = [ETw"sw']; — / 1% (Bu) s day
0

Ty
J
[ d
T [BAWGH)E — / AL (BH) o dr,
) 1
Integrate by parts again:
d L
/ U dV = [ETuw"6w']) — | I— (Ew") dw
0 dl’l 0
%
L L
d2 " / d
+ | [ (Ew )5w dxq —I— EAh (5h A—o Eh oh dxy
dzy dxl
0 0
Second term: at the tip of the beam
/tde = —Pcosféw(L) — Psinfdh(L)
S
Third term: self weight
L D/2
/b ou; dV = / / p(x1)gcosBow — p(xy)gsinO(dh — ow xg)] B dxy dz
0 —D/2
Integrate with respect to xo first (see above).
L
/biéui dV = / [—p(:rl)gA cos 06w — p(x1)gAsin 95h} dx,
v 0

Gathering terms:

o-f

(Bw") + p(x1)gAcosb| dw d;

L
—l—/ [ Adj; (ER') —I—p(:vl)gAsme} oh dxy + [EIw"éw}L
1

L

[[% (Ew") (5w} + [EAh’(Sh}g + Pcosfow(L) + Psinoh(L) =0
! 0



ii.

So, for arbitrary dw and dh, across the length of the beam:

d2
e (EIw") = —p(x1)gAcosf (1)

1

d .
drs (ER') = p(z1)gsind (2)
Boundary conditions at the tip (x; = L), for arbitrary dw, dw’ and dh:

w"(L) =0 (3)
dixl (EIw") = Pcosf (4)
AE(L)K(L) = —Psin§ (5)

Boundary conditions at the root (z; = 0), by inspection: w = w’ = h = 0.

Correspondence principle: you can map the elastic solution to the viscoelastic
solution by taking Laplace transforms and making the substitution £ — sE,.(s),
as long as the boundary conditions are not time-dependent.

Elastic solution for h(z), with spatially uniform properties. Integrate (2):

1 1
n'= —sinfpg — h'= 5 sin fpgzry + Cy

E
Boundary condition (5):
Cy = —LP sinf — 1 sinfpgl. — K = 1 sinfpg(xy — L) — LP sin 0
AE E E AFE
Integrate again:
h = lSiné’pg(lx2 — Lay) — LPsin@:zc +C
E 27t TV AR S

Boundary condition h = 0 at ; =0 : Cy = 0. Tip deflection is therefore:

1 L? PL
h(L) = ——sin#@ (pg + —)

E 2 A

Take Laplace transforms:

- 1 L? PL
h(s) = 3B sin 0 (,092 + 7)

To get the viscoelastic solution substitute £ — sE,.(s):

TR 1 , pgLl? PL

Take the Laplace transform of the relaxation modulus:

—Bqgt _ E
E(t)=FEpe n — E(s)= ; +O&
n

Substitute in:




2. (a)

(b)

i. Strain components:

ii.

i.

. ouy . Ous . Jug v (a+ 0z
= — = —ax = "= —cx == =
11 a.Tl 3 22 6$2 3 33 a$3 1—p 3
1 5’u1 8u2 1 1
= (T2 4 22 = by — ~bas = —b
c12 2 (81’2 + 8x1> 2 3 2 3 3

1 (0u; Ou 1 1
=5 (Gar * o) =~ o 4+ 5 am ) =0

1 (Ouy Ou 1 1
cu= 3 (Gae * ) =~ v ema + s em) =0

The compatibility equation in 3D is (from the data sheet):

Eijkp T Ekpyij — Epjki — Ekipj = 0

As all strain components are either zero or linear in x3, these derivatives must
be zero for any choice of indices. So, the strain field is compatible for any values
of a, b and c.

Linear elastic constitutive equations in 3D (data sheet):

E n vE
1+v Y (1+v)(1-v

05 )5kk5ij

The stress components are therefore:

E vE v
011:1+V(—a:c3)+(1+y)<1_y) (—a:cg—cxg—i—l_ (a—l—c)x3>
_ B —axs) — vE a-+c)x
=13, T T G ya oy @t e
E vE
022:1+V(—cx3) (1+V)(1_V)(a+c)$3
033 = vE (a+c)xs — vE (a+c)xs =0
BT 1 +v)(1-v) P+ (1-v) ’
E
T2 =T, (—bxs) 013 =093 =0

For equilibrium in the absence of body forces:

995 _ |,
(‘31;]-

All non-zero stress components are linear in 3, so this is zero for any combi-

nation of indices 7,7 = 1,2. Also, stress components o153 = 031 = 093 = 030 =

o33 = 0. So equilibrium is satisfied for any values of the indices, for any values

of a, b and c.

(Note that this displacement field is the general solution for a thin plate in the
x1-To plane, plane stress, in bending. The constants a, b and ¢ would be found
from the boundary conditions.)

0Q  0Ox; 0q

F=02:/0X5, Vo = 55~ = 55 5 -
i 7 J

= FTvq




ii.

1il.

On the spatial configuration:

/deﬂz/ v-ndl
Q a0

Note that if v = J1FV, then V = JF~'v. On the reference

VOVdQOI/ VNdFO
9o

= / (JF ') - Ndly
0Qo

Qo

= / v- (JFTN)dDy
0Qo

Since the divergence is preserved,

/v-ndI‘:/ V-NdFoz/ v- (JFTN) AT,
o0 0o 9o

ndl = JF~TN AT,

hence

which is Nanson’s formula.
Note that if v = J~'FV, then V = JF~'v. Using integration by parts and
change-of-variables:
/(V ~v)qgdQ = — / v-VqdQ (by integration by parts,¢ = 0 on 09)
Q Q
= - / v (F71VQ)dQ
Q
=— / v (F7TVQ)J Ay
Qo
—~ [ (P (Vo) afy
Qo
= / (Vo (JF'))QdSy (by integration by parts, @ = 0 on 9£2)
Qo
= / (Vo -V)QdQy.
Qo
Since ¢(z) = Q(X) is zero on the boundary but is otherwise arbitrary,

/Vde: Vo'Von,
Q Qo

which proves that the divergence is preserved.



(a)

i. Deformation gradient is constant, therefore transformation is linear (there are
more complex maps that would still give the same mapping of the vertices, but
det F' would not be constant).

2X5 +2X,

(b(X) = 2X,

e 260 @2)
___—M, (o) : /—\

::Ti?ﬂ; Ge) (3 (2,8)

ii. Deformation gradient is constant, therefore determinant is constant. Reference
area is 1/2, after mapping the area is 2. Therefore det ' = 4 since dQ2 = J d€y.

iii. F'=Vyp = gj? . Hence

J

F =

2 2
0 2
Verify determinant: det F' = 4.
iv. Vectors (give unit length): W, = [-1/v/2,1/v2]", W,, = [1/v/2,1/v/2]"

Compute F~1;
a2 2] _ 2 -2
400 2|0 1/2

and noting that (det F)~! = 1/4.
Applying the first map to W,

@ 1|2 2] |[-1/vV2] 0
YT o 2| | yvE | T 1/evR)

Applying the first map to W,

03l S - )
=g o 2] (1vel T /eve)

Applying the second map to W,

@ [1/2 0 ] [—1/@] B [—1/(2\/5)]

YT o12 1/2) | 1/v2 1/v2

Applying the second map to W,

- Al
Yot T 12 12| (Ve T |0



v. Plot:

foe o
_ T
[ T = [//‘LJ'L]
aUAS

Noteworthy is that:

e Map 1 maintains the tangent direction of the tangential field but the mag-
nitude is different.
A more subtle point is that for the normal field, while the mapped field is
no longer normal, the component normal to the edge times the edge length
is preserved.

e Map 2 maintains the normal direction of the normal field but the magnitude
is different.
A more subtle point is that for the tangential field, while the mapped field is
not tangential, the component tangential to the edge times the edge length
is preserved.

(b) A hyperelastic constitutive model is defined by a strain energy density function that
is time-independent and includes no dissipative terms. Stress are computed by taking
derivatives with respect to a deformation measure.

The strain energy density function can only depend on quantities that are invariant
with respect to the reference frame and they must eliminate rigid body rotations.

Dg _ 9q(o(X,1),1) dq 0¢ _ 0q
L AN S R R — 1y L =22 1vg-
Dt o |y, 0t VU T TV
From py = Jp,
Dpo _ D(Jp) _ DJ  Dp,
>V TR TR TR
Inserting J = JV - v,
Dp
JpV - J—=0
pV v+ Di
leading to
Dp
V- — =0
pV v+ Di
Using the material derivative for a scalar,
0
a—f+Vp~v—|—pV-v:O



Grouping terms two and three,

dp
5 TV () =

Ver.2



