
4C9 Continuum Mechanics Crib: 2025

1. (a) i. The beam is slender, so Euler-Bernoulli kinematics is a good model: rotation of
planar cross sections. If the transverse deflection of the centre line is w(x1), the
anti-clockwise rotation of the cross-section ϕ(x1) = dw/dx1, and the displace-
ment of a material point:

u (x1, x2) = w(x1)e2 − ϕ(x1)x2e1 = w (x1) e2 −
dw (x1)

dx1

x2e1

Superimpose a uniform (across the beam cross section at any point x1) axial
deformation due to the components of the external loading in this direction:

u (x1, x2) = h (x1) e1

The total displacement is:

u (x1, x2) = w (x1) e2 +

[
h (x1)−

dw (x1)

dx1

x2

]
e1

ii. The kinematics model gives zero shear strain. The beam is slender, so σ22ε22 ≈ 0
and σ33ε33 ≈ 0. Hence:

U =
1

2
σijεij =

1

2
σ11ε11 =

1

2
E(x1)ε

2
11

iii. Method of minimum PE, noting that the properties are spatially varying, E(x1)
and ρ(x1). At equilibrium:

δΠ =

∫
V

δU dV −
∫
S

teiδui dS −
∫
V

biδui dV = 0

First term: Using displacements

ε11 =
∂u1

∂x1

= −w′′(x1)x2 + h′(x1)

∴ U =
1

2
E(x1)

[
w′′(x1)

2x2
2 + h′(x1)

2 − 2h′(x1)w
′′(x1)x2

]
Variation in U with arbitrary perturbation of w and h:

δU =
∂U

∂w′′ δw
′′ +

∂U

∂h′ δh
′

= E(x1)
[
w′′(x1)x

2
2δw

′′ + h′(x1)δh
′ − w′′(x1)x2δh

′ − h′(x1)x2δw
′′]

Integrate over the beam volume, noting deformation is uniform across the width
B at any point:

∫
V

δU dV =

L∫
0

D/2∫
−D/2

E(x1)[w
′′(x1)x

2
2δw

′′ + h′(x1)δh
′

− w′′(x1)x2δh
′ − h′(x1)x2δw

′′]B dx2 dx1
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Integrate with respect to x2 first. Note that:

D/2∫
−D/2

(· · · ) dx2 = (· · · )D
D/2∫

−D/2

(· · · )x2 dx2 = 0

D/2∫
−D/2

(· · · )x2
2 dx2 = (· · · )D

3

12

And let I = BD3/12 and A = BD:∫
V

δU dV =

L∫
0

E(x1)
[
Iw′′(x1)δw

′′ + Ah′(x1)δh
′] dx1

Integrate by parts (not forgetting that E is a function of x1):∫
V

δU dV =
[
EIw′′δw′]L

0
−

L∫
0

I
d

dx1

(
Ew′′) δw′ dx1

+
[
EAh′δh

]L
0
−

L∫
0

A
d

dx1

(
Eh′) δh dx1

Integrate by parts again:∫
V

δU dV =
[
EIw′′δw′]L

0
−
[
I

d

dx1

(
Ew′′) δw]L

0

+

L∫
0

I
d2

dx2
1

(
Ew′′) δw dx1 +

[
EAh′δh

]L
0
−

L∫
0

A
d

dx1

(
Eh′) δh dx1

Second term: at the tip of the beam∫
S

teidS = −P cos θδw(L)− P sin θδh(L)

Third term: self weight∫
V

biδui dV =

L∫
0

D/2∫
−D/2

[
−ρ(x1)g cos θδw − ρ(x1)g sin θ(δh− δw′x2)

]
B dx2 dx1

Integrate with respect to x2 first (see above).∫
V

biδui dV =

L∫
0

[
−ρ(x1)gA cos θδw − ρ(x1)gA sin θδh

]
dx1

Gathering terms:

δΠ =

L∫
0

[
I
d2

dx2
1

(
Ew′′)+ ρ(x1)gA cos θ

]
δw dx1

+

L∫
0

[
−A

d

dx1

(
Eh′)+ ρ(x1)gA sin θ

]
δh dx1 +

[
EIw′′δw′]L

0

−
[
I

d

dx1

(
Ew′′) δw]L

0

+
[
EAh′δh

]L
0
+ P cos θδw(L) + P sin θδh(L) = 0
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So, for arbitrary δw and δh, across the length of the beam:

d2

dx2
1

(
EIw′′) = −ρ(x1)gA cos θ (1)

d

dx1

(
Eh′) = ρ(x1)g sin θ (2)

Boundary conditions at the tip (x1 = L), for arbitrary δw, δw′ and δh:

w′′(L) = 0 (3)

d

dx1

(
EIw′′) = P cos θ (4)

AE(L)h′(L) = −P sin θ (5)

Boundary conditions at the root (x1 = 0), by inspection: w = w’ = h = 0.

(b) i. Correspondence principle: you can map the elastic solution to the viscoelastic
solution by taking Laplace transforms and making the substitution E → sĒr(s),
as long as the boundary conditions are not time-dependent.

ii. Elastic solution for h(x1), with spatially uniform properties. Integrate (2):

h′′ =
1

E
sin θρg → h′ =

1

E
sin θρgx1 + C1

Boundary condition (5):

C1 = − 1

AE
P sin θ − 1

E
sin θρgL → h′ =

1

E
sin θρg(x1 − L)− 1

AE
P sin θ

Integrate again:

h =
1

E
sin θρg(

1

2
x2
1 − Lx1)−

1

AE
P sin θx1 + C2

Boundary condition h = 0 at x1 = 0 : C2 = 0. Tip deflection is therefore:

h(L) = − 1

E
sin θ

(
ρgL2

2
+

PL

A

)
Take Laplace transforms:

h̄(s) = − 1

sE
sin θ

(
ρgL2

2
+

PL

A

)
To get the viscoelastic solution substitute E → sĒr(s):

h̄(s) = − 1

s2Ēr(s)
sin θ

(
ρgL2

2
+

PL

A

)
Take the Laplace transform of the relaxation modulus:

Er(t) = E0e
−E0t

η → Ēr(s) =
E0

s+ E0

η

Substitute in:

h̄(s) = −
(

1

E0s
+

1

ηs2

)
sin θ

(
ρgL2

2
+

PL

A

)
Inverse Laplace transform:

h(L, t) = −
(

1

E0

+
t

η

)
sin θ

(
ρgL2

2
+

PL

A

)
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2. (a) i. Strain components:

ε11 =
∂u1

∂x1

= −ax3 ε22 =
∂u2

∂x2

= −cx3 ε33 =
∂u3

∂x3

=
ν

1− ν
(a+ c)x3

ε12 =
1

2

(
∂u1

∂x2

+
∂u2

∂x1

)
= −1

2
bx3 −

1

2
bx3 = −bx3

ε13 =
1

2

(
∂u1

∂x3

+
∂u3

∂x1

)
= −1

2
(ax1 + bx2) +

1

2
(ax1 + bx2) = 0

ε23 =
1

2

(
∂u2

∂x3

+
∂u3

∂x2

)
= −1

2
(bx1 + cx2) +

1

2
(bx1 + cx2) = 0

The compatibility equation in 3D is (from the data sheet):

εij,kp + εkp,ij − εpj,ki − εki,pj = 0

As all strain components are either zero or linear in x3, these derivatives must
be zero for any choice of indices. So, the strain field is compatible for any values
of a, b and c.

ii. Linear elastic constitutive equations in 3D (data sheet):

σij =
E

1 + ν
εij +

νE

(1 + ν)(1− ν)
εkkδij

The stress components are therefore:

σ11 =
E

1 + ν
(−ax3) +

νE

(1 + ν)(1− ν)

(
−ax3 − cx3 +

ν

1− ν
(a+ c)x3

)
=

E

1 + ν
(−ax3)−

νE

(1 + ν)(1− ν)
(a+ c)x3

σ22 =
E

1 + ν
(−cx3)−

νE

(1 + ν)(1− ν)
(a+ c)x3

σ33 =
νE

(1 + ν)(1− ν)
(a+ c)x3 −

νE

(1 + ν)(1− ν)
(a+ c)x3 = 0

σ12 =
E

1 + ν
(−bx3) σ13 = σ23 = 0

For equilibrium in the absence of body forces:

∂σij

∂xj

= 0

All non-zero stress components are linear in x3, so this is zero for any combi-
nation of indices i, j = 1, 2. Also, stress components σ13 = σ31 = σ23 = σ32 =
σ33 = 0. So equilibrium is satisfied for any values of the indices, for any values
of a, b and c.

(Note that this displacement field is the general solution for a thin plate in the
x1-x2 plane, plane stress, in bending. The constants a, b and c would be found
from the boundary conditions.)

(b) i. F = ∂xi/∂XJ , ∇0Q =
∂Q

∂Xi

=
∂xj

∂Xi

∂q

∂xj

= F T∇q
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ii. On the spatial configuration:∫
Ω

∇ · v dΩ =

∫
∂Ω

v · n dΓ

Note that if v = J−1FV , then V = JF−1v. On the reference∫
Ω0

∇0 · V dΩ0 =

∫
∂Ω0

V ·N dΓ0

=

∫
∂Ω0

(JF−1v) ·N dΓ0

=

∫
∂Ω0

v · (JF−TN) dΓ0

Since the divergence is preserved,∫
∂Ω

v · n dΓ =

∫
∂Ω0

V ·N dΓ0 =

∫
∂Ω0

v · (JF−TN) dΓ0,

hence
n dΓ = JF−TN dΓ0,

which is Nanson’s formula.

iii. Note that if v = J−1FV , then V = JF−1v. Using integration by parts and
change-of-variables:∫
Ω

(∇ · v)q dΩ = −
∫
Ω

v · ∇q dΩ (by integration by parts, q = 0 on ∂Ω)

= −
∫
Ω

v · (F−T∇0Q) dΩ

= −
∫
Ω0

v · (F−T∇0Q)J dΩ0

= −
∫
Ω0

(JF−1v) · (∇0Q) dΩ0

=

∫
Ω0

(∇0 · (JF−1v))Q dΩ0 (by integration by parts, Q = 0 on ∂Ω)

=

∫
Ω0

(∇0 · V )Q dΩ0.

Since q(x) = Q(X) is zero on the boundary but is otherwise arbitrary,∫
Ω

∇ · v dΩ =

∫
Ω0

∇0 · V dΩ0,

which proves that the divergence is preserved.
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3. (a) i. Deformation gradient is constant, therefore transformation is linear (there are
more complex maps that would still give the same mapping of the vertices, but
detF would not be constant).

ϕ(X) =

[
2X1 + 2X2

2X2

]

ii. Deformation gradient is constant, therefore determinant is constant. Reference
area is 1/2, after mapping the area is 2. Therefore detF = 4 since dΩ = J dΩ0.

iii. F = ∇0ϕ =
∂ϕi

∂Xj

. Hence

F =

[
2 2
0 2

]
Verify determinant: detF = 4.

iv. Vectors (give unit length): Wt = [−1/
√
2, 1/

√
2]T , Wn = [1/

√
2, 1/

√
2]T

Compute F−1:

F−1 =
1

4

[
2 −2
0 2

]
=

[
1/2 −1/2
0 1/2

]
and noting that (detF )−1 = 1/4.
Applying the first map to Wt

w
(1)
t =

1

4

[
2 2
0 2

][
−1/

√
2

1/
√
2

]
=

[
0

1/(2
√
2)

]
Applying the first map to Wn

w(1)
n =

1

4

[
2 2
0 2

][
1/
√
2

1/
√
2

]
=

[
1/
√
2

1/(2
√
2)

]
Applying the second map to Wt

w
(2)
t =

[
1/2 0
−1/2 1/2

][
−1/

√
2

1/
√
2

]
=

[
−1/(2

√
2)

1/
√
2

]
Applying the second map to Wn

w(2)
n =

[
1/2 0
−1/2 1/2

][
1/
√
2

1/
√
2

]
=

[
1/
√
2

0

]
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v. Plot:

— İ[rı-

Noteworthy is that:

• Map 1 maintains the tangent direction of the tangential field but the mag-
nitude is different.
A more subtle point is that for the normal field, while the mapped field is
no longer normal, the component normal to the edge times the edge length
is preserved.

• Map 2 maintains the normal direction of the normal field but the magnitude
is different.
A more subtle point is that for the tangential field, while the mapped field is
not tangential, the component tangential to the edge times the edge length
is preserved.

(b) A hyperelastic constitutive model is defined by a strain energy density function that
is time-independent and includes no dissipative terms. Stress are computed by taking
derivatives with respect to a deformation measure.

The strain energy density function can only depend on quantities that are invariant
with respect to the reference frame and they must eliminate rigid body rotations.

(c)
Dq

Dt
=

∂q(ϕ(X, t), t)

∂t

∣∣∣∣
X=const

=
∂q

∂t
+∇q · ∂ϕ

∂t
=

∂q

∂t
+∇q · v

From ρ0 = Jρ,
Dρ0
Dt

=
D(Jρ)

Dt
= ρ

DJ

Dt
+

Dρ

Dt
J = 0

Inserting J̇ = J∇ · v,
Jρ∇ · v + J

Dρ

Dt
= 0

leading to

ρ∇ · v + Dρ

Dt
= 0

Using the material derivative for a scalar,

∂ρ

∂t
+∇ρ · v + ρ∇ · v = 0
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Grouping terms two and three,

∂ρ

∂t
+∇ · (ρv) = 0

Ver.2
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