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1 A slender cantilever beam is inclined at an angle 𝜃 to the horizontal, as shown in
Fig. 1. The beam has length 𝐿, depth 𝐷 and out-of-plane width 𝐵. The position of a
material point on the mid-plane of the beam is x = 𝑥1e1+𝑥2e2. The loading is provided by
self-weight and a vertical tip force of magnitude 𝑃, in the directions shown in the figure.
Infinitesimal deformations can be assumed.

(a) The beam is manufactured from a graded linear elastic material with density 𝜌(𝑥1)
and Young’s modulus 𝐸 (𝑥1) that vary with distance 𝑥1 along the beam.

(i) Show that the displacement field for the mid-plane can be approximated by

u (𝑥1, 𝑥2) = 𝑤e2 +
(
ℎ − 𝑑𝑤

𝑑𝑥1
𝑥2

)
e1,

where ℎ (𝑥1) and 𝑤 (𝑥1) are the displacements of points on the centre-line of the
beam in directions e1 and e2, respectively. [10%]

(ii) Explain why the elastic strain energy density at a point depends only on the
stress component 𝜎11 and the strain component 𝜀11. [10%]

(iii) Hence, use the method of minimum potential energy to derive governing
equations for the centre-line deflections ℎ (𝑥1) and 𝑤 (𝑥1), and for the boundary
conditions. A solution for the deflected shape is not required. [40%]

(b) The beam is instead manufactured from a spatially uniform linear viscoelastic
material with density 𝜌 and relaxation modulus 𝐸𝑟 (𝑡) = 𝐸0 exp (−𝐸0𝑡/𝜂).

(i) Explain briefly what is meant by the correspondence principle. [10%]

(ii) Using the correspondence principle, derive an expression for the time-
dependent axial deflection at the tip of the cantilever, ℎ (𝐿, 𝑡). [30%]
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2 (a) A linear elastic body with Young’s modulus 𝐸 and Poisson’s ratio 𝜈 undergoes
infinitesimal deformation. The displacement field u(x), where the position x = 𝑥𝑖e𝑖, has
components

𝑢1 = − (𝑎𝑥1 + 𝑏𝑥2) 𝑥3,

𝑢2 = − (𝑏𝑥1 + 𝑐𝑥2) 𝑥3,

𝑢3 =
1
2

[
𝑎𝑥2

1 + 2𝑏𝑥1𝑥2 + 𝑐𝑥2
2 + 𝜈

1 − 𝜈
(𝑎 + 𝑐)𝑥2

3

]
,

where 𝑎, 𝑏 and 𝑐 are constants. Prove any requirements on 𝑎, 𝑏 and 𝑐 to ensure that:

(i) the deformation is compatible; and [25%]

(ii) the body is in equilibrium in the absence of body forces. [25%]

(b) Consider a body with reference configuration Ω0 and a current configuration Ω. The
deformation gradient is 𝑭 and its determinant 𝐽 = det 𝑭.

(i) Show that ∇0𝑄 = 𝑭𝑇∇𝑞, where𝑄 is a scalar field on a reference configuration
and 𝑞 is its push-forward to the spatial configuration. [10%]

(ii) Consider a vector 𝑽 on the reference configuration. If the push-forward to the
spatial configuration is given by 𝒗 = 𝐽−1𝑭𝑽, divergences of the vector fields are
preserved, i.e.

∫
Ω0

∇0 ·𝑽 𝑑Ω0 =
∫
Ω
∇ · 𝒗 𝑑Ω. Use this result to find the relationship

between the outward unit normal vectors to Ω0 and to Ω. [20%]

(iii) Prove that
∫
Ω0

∇0 · 𝑽 𝑑Ω0 =
∫
Ω
∇ · 𝒗 𝑑Ω when 𝒗 = 𝐽−1𝑭𝑽.

Hint: start with
∫
Ω
(∇ · 𝒗)𝑞 𝑑Ω, where 𝑞 is a differentiable function that goes to zero

on the boundary of Ω. [20%]
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3 (a) Consider a triangle in the reference configuration with vertices 𝑣̂1 = (0, 0),
𝑣̂2 = (1, 0), 𝑣̂3 = (0, 1). Under a transformation the vertices map to 𝑣1 = (0, 0),
𝑣2 = (2, 0), 𝑣3 = (2, 2). The deformation gradient, 𝑭, is constant.

(i) Sketch the two configurations and give the deformation map 𝝓(𝑿). [20%]

(ii) By geometric arguments alone, give det 𝑭. [10%]

(iii) Compute the deformation gradient. [10%]

(iv) Consider two vector fields, 𝑾𝑡 and 𝑾𝑛, on the reference configuration. On
the edge 𝑣̂2–𝑣̂3, 𝑾𝑡 is tangential to the edge and 𝑾𝑛 is normal to the edge. Apply
the transformations 𝒘 (1) = (det 𝑭)−1𝑭𝑾 and 𝒘 (2) = 𝑭−𝑇𝑾, which are both
push-forward transformations, to 𝑾𝑡 and 𝑾𝑛 at a point on the 𝑣̂2–𝑣̂3 edge. [20%]

(v) Sketch the vectors 𝑾𝑡 and 𝑾𝑛 at a point on the 𝑣̂2–𝑣̂3 edge, and on the spatial
configuration for the 𝒘 (1) and 𝒘 (2) push-forward transformations. Comment on any
significant features. [10%]

(b) What properties make a constitutive model hyperelastic? Comment on any
requirements on the kinematic quantities that a constitutive model may depend on. [10%]

(c) Derive the expression for the material time derivative of a scalar quantity on the
current configuration, and use this to prove that conservation of mass requires that
𝜕𝜌/𝜕𝑡 + ∇ · (𝜌𝒗) = 0, where 𝜌 is the density and 𝒗 is the velocity.

Note: ¤𝐽 = 𝐽∇ · 𝒗. [20%]

END OF PAPER
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ENGINEERING TRIPOS PART IIB 

Module 4C9 Continuum Mechanics 

Data sheet 

Indicial notation 

A repeated index implies summation  

 i ia=a e  i ia b =a b   

= c a b  can be written as  i ijk j kc e a b=  

𝑨 = 𝒂 ⊗ 𝒃  can be written as 𝐴𝑖𝑗 = 𝑎𝑖𝑏𝑗  

Kronecker delta:    ij =1 for i = j,  and ij = 0 for i j   

Note that   ij i j = e e  

Permutation symbol:   1ijke =   when , ,i j k  are in cyclic order 

   1ijke = −   when , ,i j k  are in anti-cyclic order 

   0ijke =   when any indices repeat 

e −   identity:    ijk ipq jp kq jq kpe e    = −  

grad ,i i  =  = e  

div ,i iv=  =v v  

curl ,ijk k j ie v= =v v e  

Gauss’s theorem (the divergence theorem): 

∫
𝜕𝐴𝑖𝑗

𝜕𝑥𝑗
𝑉

𝑑𝑉 = ∮ 𝐴𝑖𝑗𝑛𝑗

𝑆

𝑑𝑆 

Stokes’s theorem: 

∫ 𝑒𝑖𝑗𝑘

𝜕𝐴𝑝𝑘

𝜕𝑥𝑗
𝑆

𝑛𝑖𝑑𝑆 = ∮ 𝐴𝑝𝑘

𝐶

 𝑑𝑥𝑘 
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Isotropic linear elasticity 

Equilibrium:   𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  ,   𝜎𝑖𝑗 = 𝜎𝑗𝑖 

Compatibility:  𝜀𝑖𝑗,𝑘𝑝 + 𝜀𝑘𝑝,𝑖𝑗 − 𝜀𝑝𝑗,𝑘𝑖 − 𝜀𝑘𝑖,𝑝𝑗 = 0 

Constitutive relationships: 𝜎𝑖𝑗 =
𝐸

(1+𝜈)
𝜀𝑖𝑗 +

𝜈𝐸

(1+𝜈)(1−2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗    

Lame’s constants:    𝜇 = 𝐺 =
𝐸

2(1+𝜈)
    ,   𝜆 =

𝜈𝐸

(1+𝜈)(1−2𝜈)
  

The strain energy density 𝑈 is given by:   𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
 

At equilibrium, the potential energy Π is minimised. Hence, for any small 

kinematically admissible perturbation 𝛿𝑢𝑖 : 

𝛿Π = ∫ 𝛿𝑈𝑑𝑉

𝑉

− ∫ 𝑡𝑖
𝑒𝛿𝑢𝑖𝑑𝑆

𝑆

− ∫ 𝑏𝑖𝛿𝑢𝑖𝑑𝑉 = 0

𝑉

 

Definitions:  𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the infinitesimal strain tensor, 𝑏𝑖 is the body 

force vector, 𝑡𝑖
𝑒  is the external traction vector and 𝑢𝑖 is the displacement vector. 

Isotropic linear viscoelasticity 

Relaxation modulus, 𝐸𝑟(𝑡): 

if   ε(𝑡) = ε0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  σ(𝑡) = ε0𝐸𝑟(𝑡) 

Creep compliance, 𝐽𝑐(𝑡):  

if   σ(𝑡) = σ0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  ε(𝑡) = σ0𝐽𝑐(𝑡) 

The Laplace transforms of 𝐸𝑟(𝑡) and 𝐽𝑐(𝑡) are related by:   𝐸̅𝑟(𝑠) 𝐽𝑐̅(𝑠) =
1

𝑠2 

Boltzmann superposition principle in 1D:  

𝜎(𝑡) = ∫
∂𝜀(𝜏)

∂τ
𝐸𝑟(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

𝜀(𝑡) = ∫
∂𝜎(𝜏)

∂τ
𝐽𝑐(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Correspondence principle:  in the Laplace domain, the viscoelastic solution 

corresponds to the elastic solution, with the substitution  𝐸 → 𝑠𝐸̅𝑟(𝑠) ,   𝜈 → 𝑠𝜈̅𝑟(𝑠)  

(for any time-dependent moduli).   


