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The tank is open-ended, so there will be no longitudinal stress, o9s. Because it
is thin-walled, it can be assumed to be in a state of plane stress, so there will
be no through-thickness stress, o33, or out-of plane shear o,3 or o13. The only
loading is internal pressure, so there will be no in-plane shear, 5. The pressure
is balanced by the hoop stress oy only.

The elastic strain energy per unit volume at any point in the wall
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using the constitutive model. The total elastic strain in the wall is therefore

/Ude

14

Ee?, 2nRw dz

N | —

noting that €11(z) varies with position.

We are using the method of minimum potential energy to derive an expression
for the hoop strain, so we can use £11(z) as the kinematic variable; there is no
need to work in terms of displacements. The variation in potential energy:
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Noting that § R = Rdeq; this reduces to
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For ¢II = 0 for any deqq, then
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Note that, applying the constitutive model, this recovers the familiar equilibrium
relationship for the hoop stress in a thin walled cylinder: o1 = pg(H — 2)R/w
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(b)

i. The uniaxial response of the material is given by the relationship
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The tank is filled with water at a constant rate H, such that H = Ht. The
constitutive model gives the hoop strain rate (all other stress components are
Z€ro):
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At a given height z the hoop stress, deduced from part (a) or otherwise, will be
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Substituting for the creep compliance and the hoop stress into the constitutive
equation:

t<z/H: en(t)=0
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Rate of change of the radius (t > z/H):

: t 1 z HR?
R=¢uR= —+——.—] P9
From the constitutive model £33 = —veqq, where v is time independent, so
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2. (a) The principle of virtual work
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Using de;; = %(5um~ + du;;), and the symmetry of the stress tensor:
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Using %(O’Z](Suz) = Jijéum + O'l'j,]dui gives:
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Applying the divergence theorem:
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For this to hold for any du, requires o;; ; + b; = 0 within V' and ¢{ = o;;n; across S.

(b) The balance of moments on the body:
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or in indicial notation (using t§ = o;;n;):
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Applying the divergence theorem:
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Using the equilibrium equation o;; ; + b; = 0:
€ijk0k; =0

Expanding, and using the fact that e;;; = —e;;, leads to oy; = 0.

i. Consider the SVD B = WX Z7T, which exists for all tensors B.
With B = W¥ZT = WZTZ¥Z", if B = RU we have R = WZT and U =
Z¥ZT. R is by definition orthogonal. Since the entries of ¥ are non-negative,
U is symmetric positive-semidefinite.
For B=VR=WXWIWZT we have V.= WEW? (SPD) and R = WZ7 (as
before).
If det B # 0, ¥ entries are strictly positive, hence U and V are SPD and
det U,det V' > 0. This leave det(RU) = det RdetU > 0, therefore det R = 1
(proper orthogonal).



ii.

1il.

Due to the existence of the preceding decomposition FTF = URTRU = U?
and FFT = VRRTV = V2. This shows that FTF and FFT are suitable strain
measures in that they are unaffected by rigid body rotations.

For dv = RUdX, this gives a stretch of the incremental vector dX in the direc-
tions of the eigenvalues of U, scaled by the corresponding eigenvalues. follow by
a rotation R into the spatial configuration.

For dr = V RdX, this rotates dX into the spatial configuration by R and the
stretches the vector by V' in the directions of the eigenvectors of V', scaled by
the corresponding eigenvalues
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To be admissible, we require that det F' > 0, therefore it is required that pgr > 0.
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det I’ = 1, therefore volume is preserved.

i. Time-dependent rigid body motion.

i. Since R is a rotation, R~! = RT, and

X=R'(¢p—c)=R"(z—c)

V(X,t) == RX +¢and v(z,t) = V(X,t)|x=p-1(zs). Inserting expression for
X in terms of z, _
v=RR"(x —c)+¢

i. F = RU, F = RU + RU. For a rigid body motion the stretch tensor is the

identity, U = I and therefore F' = R. Consider PFTF-T . F = PRTR : R.
Re-arranging (use index notation), PRT : RRT. Since RRT =1,

RET — RRY + RET — 0.

Hence RTR = —RTR, i.e. RTR is skew-symmetric. By symmetry of PR (use
hint) and skew-symmetry of RT R the stress power is zero.
F = RU + RU, hence stress power is

P:F=P:(RU+RU).
P:(RU+ RU)=P:(RU)+ P : (RU)
Considering the second term:
P:(RU)=(R"P):U
(by index manipulations). Considering the first term and using R"R = I:
P:(RU)=P: (RR'RU)

= P: (RR"F)
= (PFT): (RRY)
The contraction of a symmetric tensor (PEF7 here) and a skew-symmetric tensor

(RRT) is zero. Therefore RT P is the stress measure that is conjugate to U. Since
U is symmetric, we could define a symmetric stress tensor 1/2(RTP + PTR).
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