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1. (a) i. The tank is open-ended, so there will be no longitudinal stress, σ22. Because it
is thin-walled, it can be assumed to be in a state of plane stress, so there will
be no through-thickness stress, σ33, or out-of plane shear σ23 or σ13. The only
loading is internal pressure, so there will be no in-plane shear, σ12. The pressure
is balanced by the hoop stress σ11 only.

The elastic strain energy per unit volume at any point in the wall

U =
1

2
σijεij =

1

2
σ11ε11 =

1

2
Eε211

using the constitutive model. The total elastic strain in the wall is therefore

∫
V

U dV =

H∫
0

1

2
Eε211 2πRw dz

noting that ε11(z) varies with position.

ii. We are using the method of minimum potential energy to derive an expression
for the hoop strain, so we can use ε11(z) as the kinematic variable; there is no
need to work in terms of displacements. The variation in potential energy:

δΠ =

∫
V

δU dV −
∫
S

teiδui dS

=

H∫
0

∂

∂ε11

(
1

2
Eε211

)
δε11 2πRw dz −

H∫
0

ρg(H − z)δR 2πR dz

Noting that δR = Rδε11 this reduces to

δΠ =

H∫
0

[
Eε11w − ρg(H − z)R

]
δε112πR dz

For δΠ = 0 for any δε11, then

ε11 =
ρg(H − z)R

Ew

Note that, applying the constitutive model, this recovers the familiar equilibrium
relationship for the hoop stress in a thin walled cylinder: σ11 = ρg(H − z)R/w
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(b) i. The uniaxial response of the material is given by the relationship

ε̇ =
σ̇

E
+

σ

η

Relaxation modulus Er(t): consider a step in strain of magnitude ε0.

t = 0 ε̇ >> ε ε̇0 = σ̇
E

∴ ε = σ
E
, σ(0) = Eε0

t > 0 ε̇ = 0 σ̇
E
+ σ

η
= 0 ∴ σ = (Eε0) exp

(
−Et

η

)
Er(t) =

σ(t)
ε0

= E exp
(
−Et

η

)
Creep compliance Jc(t): consider a step in stress of magnitude σ0.

t = 0 σ̇ >> σ ε̇ = σ̇
E

∴ ε = σ
E
, ε(0) = σ0

E

t > 0 σ̇ = 0 ε̇ = σ0

η
∴ ε = σ0t

η
+ σ0

E

Jc(t) =
ε(t)
σ0

= t
η
+ 1

E

ii. The tank is filled with water at a constant rate Ḣ, such that H = Ḣt. The
constitutive model gives the hoop strain rate (all other stress components are
zero):

ε11(t) =

t∫
0

Jc(t− τ)
∂σ11(τ)

∂τ
dτ

At a given height z the hoop stress, deduced from part (a) or otherwise, will be

t < z/Ḣ : σ11 = 0

t ≥ z/Ḣ : σ11 =
ρg(Ḣt− z)R

w

Substituting for the creep compliance and the hoop stress into the constitutive
equation:

t < z/Ḣ : ε11(t) = 0

t ≥ z/Ḣ : ε11(t) =

t∫
z/Ḣ

(
t− τ

η
+

1

E

)
∂

∂τ

(
ρg(Ḣτ − z)R

w

)
dτ

=

t∫
z/Ḣ

(
t− τ

η
+

1

E

)
ρgḢR

w
dτ

=

(tτ

η
− τ 2

2η
+

τ

E

)
ρgḢR

w

t

z/Ḣ

=

( t2

2η
+

t

E

)
−

(
tz

Ḣη
− z2

2ηḢ2
+

z

EḢ

) ρgḢR

w
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Rate of change of the radius (t ≥ z/Ḣ):

Ṙ = ε̇11R =

[
t

η
+

1

E
− z

Ḣη

]
ρgḢR2

w

From the constitutive model ε33 = −νε11, where ν is time independent, so

ẇ = ε̇33w = −νε̇11w = −ν

[
t

η
+

1

E
− z

Ḣη

]
ρgḢR
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2. (a) The principle of virtual work∫
V

σijδεij dV −
∫
S

teiδui dS −
∫
V

biδui dV = 0

Using δεij =
1
2
(δui,j + δuj,i), and the symmetry of the stress tensor:∫

V

σijδui,j dV −
∫
S

teiδui dS −
∫
V

biδui dV = 0

Using ∂
∂xj

(σijδui) = σijδui,j + σij,jδui gives:∫
V

∂

∂xj

(σijδui) dV −
∫
V

σij,jδui dV −
∫
S

teiδui dS −
∫
V

biδui dV = 0

Applying the divergence theorem:∫
S

(σijδui)nj dS −
∫
V

σij,jδui dV −
∫
S

teiδui dS −
∫
V

biδui dV = 0

For this to hold for any δui requires σij,j + bi = 0 within V and tei = σijnj across S.

(b) The balance of moments on the body:∫
S

x× te dS +

∫
V

x× b dV = 0

or in indicial notation (using tei = σijnj):∫
S

eijk xj σkpnp dS +

∫
V

eijk xj bk dV = 0

Applying the divergence theorem:∫
V

∂

∂xp

(eijk xj σkp) dV +

∫
V

eijk xj bk dV = 0

∴ eijk

[
∂

∂xp

(xj σkp) + xj bk

]
= 0

∴ eijk

xj

(
∂σkp

∂xp

+ bk

)
+ σkj

 = 0

Using the equilibrium equation σij,j + bi = 0:

eijkσkj = 0

Expanding, and using the fact that eijk = −eikj, leads to σkj = σjk.

i. Consider the SVD B = WΣZT , which exists for all tensors B.
With B = WΣZT = WZTZΣZT , if B = RU we have R = WZT and U =
ZΣZT . R is by definition orthogonal. Since the entries of Σ are non-negative,
U is symmetric positive-semidefinite.
For B = V R = WΣW TWZT , we have V = WΣW T (SPD) and R = WZT (as
before).
If detB ̸= 0, Σ entries are strictly positive, hence U and V are SPD and
detU, detV > 0. This leave det(RU) = detR detU > 0, therefore detR = 1
(proper orthogonal).
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ii. Due to the existence of the preceding decomposition F TF = URTRU = U2

and FF T = V RRTV = V 2. This shows that F TF and FF T are suitable strain
measures in that they are unaffected by rigid body rotations.

iii. For dx = RUdX, this gives a stretch of the incremental vector dX in the direc-
tions of the eigenvalues of U , scaled by the corresponding eigenvalues. follow by
a rotation R into the spatial configuration.

For dx = V RdX, this rotates dX into the spatial configuration by R and the
stretches the vector by V in the directions of the eigenvectors of V , scaled by
the corresponding eigenvalues
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3. (a) i.

F := ∇Xϕ =

p q
r


To be admissible, we require that detF > 0, therefore it is required that pqr > 0.

ii.

F =

1 βt2 0
0 1 0
0 3 1


detF = 1, therefore volume is preserved.

(b) i. Time-dependent rigid body motion.

ii. Since R is a rotation, R−1 = RT , and

X = RT (ϕ− c) = RT (x− c)

iii. V (X, t) = ϕ̇ = ṘX + ċ and v(x, t) = V (X, t)|X=ϕ−1(x,t). Inserting expression for
X in terms of x,

v = ṘRT (x− c) + ċ

(c) i. F = RU , Ḟ = ṘU + RU̇ . For a rigid body motion the stretch tensor is the
identity, U = I and therefore Ḟ = Ṙ. Consider PF TF−T : Ḟ = PRTR : Ṙ.
Re-arranging (use index notation), PRT : ṘRT . Since RRT = I,

˙
RRT = ṘRT +RṘT = 0.

Hence ṘTR = −RT Ṙ, i.e. ṘTR is skew-symmetric. By symmetry of PRT (use
hint) and skew-symmetry of ṘTR the stress power is zero.

ii. Ḟ = ṘU +RU̇ , hence stress power is

P : Ḟ = P : (ṘU +RU̇).

P : (ṘU +RU̇) = P : (ṘU) + P : (RU̇)

Considering the second term:

P : (RU̇) = (RTP ) : U̇

(by index manipulations). Considering the first term and using RTR = I:

P : (ṘU) = P : (ṘRTRU)

= P : (ṘRTF )

= (PF T ) : (ṘRT )

The contraction of a symmetric tensor (PF T here) and a skew-symmetric tensor
(ṘRT ) is zero. Therefore RTP is the stress measure that is conjugate to U . Since
U is symmetric, we could define a symmetric stress tensor 1/2(RTP + P TR).

GNW, May 20 24
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