4C9 Continuum Mechanics Crib

2024

1. (a) i. The tank is open-ended, so there will be no longitudinal stress, σ_{22} . Because it is thin-walled, it can be assumed to be in a state of plane stress, so there will be no through-thickness stress, σ_{33} , or out-of plane shear σ_{23} or σ_{13} . The only loading is internal pressure, so there will be no in-plane shear, σ_{12} . The pressure is balanced by the hoop stress σ_{11} only.

The elastic strain energy per unit volume at any point in the wall

$$U = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} = \frac{1}{2}\sigma_{11}\varepsilon_{11} = \frac{1}{2}E\varepsilon_{11}^2$$

using the constitutive model. The total elastic strain in the wall is therefore

$$\int_{V} U \, dV = \int_{0}^{H} \frac{1}{2} E \varepsilon_{11}^2 \, 2\pi R w \, dz$$

noting that $\varepsilon_{11}(z)$ varies with position.

ii. We are using the method of minimum potential energy to derive an expression for the hoop strain, so we can use $\varepsilon_{11}(z)$ as the kinematic variable; there is no need to work in terms of displacements. The variation in potential energy:

$$\delta \Pi = \int_{V} \delta U \, dV - \int_{S} t_{i}^{e} \delta u_{i} \, dS$$
$$= \int_{0}^{H} \frac{\partial}{\partial \varepsilon_{11}} \left(\frac{1}{2} E \varepsilon_{11}^{2}\right) \delta \varepsilon_{11} \, 2\pi R w \, dz - \int_{0}^{H} \rho g (H - z) \delta R \, 2\pi R \, dz$$

Noting that $\delta R = R \delta \varepsilon_{11}$ this reduces to

$$\delta \Pi = \int_{0}^{H} \left[E \varepsilon_{11} w - \rho g (H - z) R \right] \delta \varepsilon_{11} 2\pi R \ dz$$

For $\delta \Pi = 0$ for any $\delta \varepsilon_{11}$, then

$$\varepsilon_{11} = \frac{\rho g (H-z) R}{E w}$$

Note that, applying the constitutive model, this recovers the familiar equilibrium relationship for the hoop stress in a thin walled cylinder: $\sigma_{11} = \rho g(H-z)R/w$

(b) i. The uniaxial response of the material is given by the relationship

$$\dot{\varepsilon} = \frac{\dot{\sigma}}{E} + \frac{\sigma}{\eta}$$

Relaxation modulus $E_r(t)$: consider a step in strain of magnitude ε_0 .

$$t = 0 \quad \dot{\varepsilon} >> \varepsilon \quad \dot{\varepsilon}0 = \frac{\dot{\sigma}}{E} \quad \therefore \varepsilon = \frac{\sigma}{E} , \quad \sigma(0) = E\varepsilon_0$$
$$t > 0 \quad \dot{\varepsilon} = 0 \quad \frac{\dot{\sigma}}{E} + \frac{\sigma}{\eta} = 0 \quad \therefore \sigma = (E\varepsilon_0) \exp\left(-\frac{Et}{\eta}\right)$$
$$E_r(t) = \frac{\sigma(t)}{\varepsilon_0} = E \exp\left(-\frac{Et}{\eta}\right)$$

Creep compliance $J_c(t)$: consider a step in stress of magnitude σ_0 .

$$t = 0 \quad \dot{\sigma} \gg \sigma \quad \dot{\varepsilon} = \frac{\dot{\sigma}}{E} \quad \therefore \varepsilon = \frac{\sigma}{E} , \quad \varepsilon(0) = \frac{\sigma_0}{E}$$
$$t > 0 \quad \dot{\sigma} = 0 \quad \dot{\varepsilon} = \frac{\sigma_0}{\eta} \quad \therefore \varepsilon = \frac{\sigma_0 t}{\eta} + \frac{\sigma_0}{E}$$
$$J_c(t) = \frac{\varepsilon(t)}{\sigma_0} = \frac{t}{\eta} + \frac{1}{E}$$

ii. The tank is filled with water at a constant rate \dot{H} , such that $H = \dot{H}t$. The constitutive model gives the hoop strain rate (all other stress components are zero):

$$\varepsilon_{11}(t) = \int_{0}^{t} J_{c}(t-\tau) \frac{\partial \sigma_{11}(\tau)}{\partial \tau} d\tau$$

At a given height z the hoop stress, deduced from part (a) or otherwise, will be

$$t < z/\dot{H}: \quad \sigma_{11} = 0$$

$$t \ge z/\dot{H}: \quad \sigma_{11} = \frac{\rho g(\dot{H}t - z)R}{w}$$

Substituting for the creep compliance and the hoop stress into the constitutive equation:

$$\begin{split} t < z/\dot{H} : \quad \varepsilon_{11}(t) &= 0 \\ t \ge z/\dot{H} : \quad \varepsilon_{11}(t) = \int_{z/\dot{H}}^{t} \left(\frac{t-\tau}{\eta} + \frac{1}{E}\right) \frac{\partial}{\partial \tau} \left(\frac{\rho g(\dot{H}\tau - z)R}{w}\right) d\tau \\ &= \int_{z/\dot{H}}^{t} \left(\frac{t-\tau}{\eta} + \frac{1}{E}\right) \frac{\rho g \dot{H}R}{w} d\tau \\ &= \left[\left(\frac{t\tau}{\eta} - \frac{\tau^2}{2\eta} + \frac{\tau}{E}\right) \frac{\rho g \dot{H}R}{w} \right]_{z/\dot{H}}^{t} \\ &= \left[\left(\frac{t^2}{2\eta} + \frac{t}{E}\right) - \left(\frac{tz}{\dot{H}\eta} - \frac{z^2}{2\eta \dot{H}^2} + \frac{z}{E\dot{H}}\right) \right] \frac{\rho g \dot{H}R}{w} \end{split}$$

Rate of change of the radius $(t \ge z/\dot{H})$:

$$\dot{R} = \dot{\varepsilon}_{11}R = \left[\frac{t}{\eta} + \frac{1}{E} - \frac{z}{\dot{H}\eta}\right]\frac{\rho g \dot{H}R^2}{w}$$

From the constitutive model $\varepsilon_{33} = -\nu \varepsilon_{11}$, where ν is time independent, so

$$\dot{w} = \dot{\varepsilon}_{33}w = -\nu\dot{\varepsilon}_{11}w = -\nu\left[\frac{t}{\eta} + \frac{1}{E} - \frac{z}{\dot{H}\eta}\right]\rho g\dot{H}R$$

2. (a) The principle of virtual work

$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} \, dV - \int_{S} t_{i}^{e} \delta u_{i} \, dS - \int_{V} b_{i} \delta u_{i} \, dV = 0$$

Using $\delta \varepsilon_{ij} = \frac{1}{2} (\delta u_{i,j} + \delta u_{j,i})$, and the symmetry of the stress tensor:

$$\int_{V} \sigma_{ij} \delta u_{i,j} \, dV - \int_{S} t_{i}^{e} \delta u_{i} \, dS - \int_{V} b_{i} \delta u_{i} \, dV = 0$$

Using $\frac{\partial}{\partial x_j}(\sigma_{ij}\delta u_i) = \sigma_{ij}\delta u_{i,j} + \sigma_{ij,j}\delta u_i$ gives:

$$\int_{V} \frac{\partial}{\partial x_{j}} (\sigma_{ij} \delta u_{i}) \, dV - \int_{V} \sigma_{ij,j} \delta u_{i} \, dV - \int_{S} t_{i}^{e} \delta u_{i} \, dS - \int_{V} b_{i} \delta u_{i} \, dV = 0$$

Applying the divergence theorem:

$$\int_{S} (\sigma_{ij} \delta u_i) n_j \, dS - \int_{V} \sigma_{ij,j} \delta u_i \, dV - \int_{S} t_i^e \delta u_i \, dS - \int_{V} b_i \delta u_i \, dV = 0$$

For this to hold for any δu_i requires $\sigma_{ij,j} + b_i = 0$ within V and $t_i^e = \sigma_{ij}n_j$ across S. (b) The balance of moments on the body:

$$\int_{S} \mathbf{x} \times \mathbf{t}^{\mathbf{e}} \, dS + \int_{V} \mathbf{x} \times \mathbf{b} \, dV = 0$$

or in indicial notation (using $t_i^e = \sigma_{ij}n_j$):

$$\int_{S} e_{ijk} x_j \sigma_{kp} n_p \, dS + \int_{V} e_{ijk} x_j \, b_k \, dV = 0$$

Applying the divergence theorem:

$$\int_{V} \frac{\partial}{\partial x_{p}} (e_{ijk} x_{j} \sigma_{kp}) dV + \int_{V} e_{ijk} x_{j} b_{k} dV = 0$$
$$\therefore e_{ijk} \left[\frac{\partial}{\partial x_{p}} (x_{j} \sigma_{kp}) + x_{j} b_{k} \right] = 0$$
$$\therefore e_{ijk} \left[x_{j} \left(\frac{\partial \sigma_{kp}}{\partial x_{p}} + b_{k} \right) + \sigma_{kj} \right] = 0$$

Using the equilibrium equation $\sigma_{ij,j} + b_i = 0$:

$$e_{ijk}\sigma_{kj}=0$$

Expanding, and using the fact that $e_{ijk} = -e_{ikj}$, leads to $\sigma_{kj} = \sigma_{jk}$.

i. Consider the SVD $B = W\Sigma Z^T$, which exists for all tensors B. With $B = W\Sigma Z^T = WZ^T Z\Sigma Z^T$, if B = RU we have $R = WZ^T$ and U =

With $B = W \Sigma Z^{T} = W Z^{T} Z \Sigma Z^{T}$, if B = RU we have $R = W Z^{T}$ and $U = Z \Sigma Z^{T}$. R is by definition orthogonal. Since the entries of Σ are non-negative, U is symmetric positive-semidefinite.

For $B = VR = W\Sigma W^T WZ^T$, we have $V = W\Sigma W^T$ (SPD) and $R = WZ^T$ (as before).

If det $B \neq 0$, Σ entries are strictly positive, hence U and V are SPD and det U, det V > 0. This leave det $(RU) = \det R \det U > 0$, therefore det R = 1 (proper orthogonal).

- ii. Due to the existence of the preceding decomposition $F^T F = UR^T RU = U^2$ and $FF^T = VRR^T V = V^2$. This shows that $F^T F$ and FF^T are suitable strain measures in that they are unaffected by rigid body rotations.
- iii. For dx = RUdX, this gives a stretch of the incremental vector dX in the directions of the eigenvalues of U, scaled by the corresponding eigenvalues. follow by a rotation R into the spatial configuration.

For dx = VRdX, this rotates dX into the spatial configuration by R and the stretches the vector by V in the directions of the eigenvectors of V, scaled by the corresponding eigenvalues

3. (a) i.

$$F := \nabla_X \phi = \begin{bmatrix} p & & \\ & q & \\ & & r \end{bmatrix}$$

To be admissible, we require that det F > 0, therefore it is required that pqr > 0. ii.

$$F = \begin{bmatrix} 1 & \beta t^2 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$

det F = 1, therefore volume is preserved.

- (b) i. Time-dependent rigid body motion.
 - ii. Since R is a rotation, $R^{-1} = R^T$, and

$$X = R^T(\phi - c) = R^T(x - c)$$

iii. $V(X,t) = \dot{\phi} = \dot{R}X + \dot{c}$ and $v(x,t) = V(X,t)|_{X=\phi^{-1}(x,t)}$. Inserting expression for X in terms of x,

$$v = \dot{R}R^T(x - c) + \dot{c}$$

(c) i. F = RU, $\dot{F} = \dot{R}U + R\dot{U}$. For a rigid body motion the stretch tensor is the identity, U = I and therefore $\dot{F} = \dot{R}$. Consider PF^TF^{-T} : $\dot{F} = PR^TR$: \dot{R} . Re-arranging (use index notation), PR^T : $\dot{R}R^T$. Since $RR^T = I$,

$$\overline{RR^T} = \dot{R}R^T + R\dot{R}^T = 0.$$

Hence $\dot{R}^T R = -R^T \dot{R}$, i.e. $\dot{R}^T R$ is skew-symmetric. By symmetry of PR^T (use hint) and skew-symmetry of $\dot{R}^T R$ the stress power is zero.

ii. $\dot{F} = \dot{R}U + R\dot{U}$, hence stress power is

$$P: \dot{F} = P: (\dot{R}U + R\dot{U}).$$
$$P: (\dot{R}U + R\dot{U}) = P: (\dot{R}U) + P: (R\dot{U})$$

Considering the second term:

$$P: (R\dot{U}) = (R^T P): \dot{U}$$

(by index manipulations). Considering the first term and using $R^T R = I$:

$$P : (\dot{R}U) = P : (\dot{R}R^T RU)$$
$$= P : (\dot{R}R^T F)$$
$$= (PF^T) : (\dot{R}R^T)$$

The contraction of a symmetric tensor $(PF^T \text{ here})$ and a skew-symmetric tensor $(\dot{R}R^T)$ is zero. Therefore R^TP is the stress measure that is conjugate to U. Since U is symmetric, we could define a symmetric stress tensor $1/2(R^TP + P^TR)$.