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1 A slender elastic cantilever beam has length 𝐿, width 𝑏 and depth 2ℎ1, as shown in
Fig. 1. There is zero displacement and rotation at the root (𝑥1 = 0). The tip (𝑥1 = 𝐿) is
unconstrained. The beam is coated by a viscoelastic layer of depth ℎ2 and width 𝑏 on both
the top and bottom faces. A vertical force 𝐹 is applied to the tip.

Infinitesimal deformations can be assumed, with the displacement field across all three
layers given by

u (𝑥1, 𝑥2) = 𝑤 (𝑥1) e2 − 𝑤,1 (𝑥1) 𝑥2 e1 .

The initial position of a material point is x = 𝑥1 e1 + 𝑥2 e2, 𝑤 is the deflection of a point
on the beam centre-line (i.e. at 𝑥2 = 0) and 𝑤,1 is the rotation of the cross-section, which
is assumed to remain planar.

(a) The elastic portion of the beam has Young’s modulus 𝐸1 and Poisson’s ratio 𝜈1.
Explain why the elastic strain energy density in this part of the beam is given by

𝑈 =
1
2
𝐸1𝜀

2
11

where 𝜀𝑖 𝑗 =
(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
/2 are the infinitesimal strain components. [10%]

(b) Neglecting the viscoelastic layers (i.e. the case ℎ2 = 0), and neglecting any body
forces, use the method of minimum potential energy to show that the beam deflection must
satisfy 𝑤,1111 = 0 for 0 ≤ 𝑥1 ≤ 𝐿. Write down the boundary conditions required to solve
for 𝑤 (𝑥1), although a solution is not required. [40%]

(c) Now include the viscoelastic layers (i.e. ℎ2 ≠ 0), which have relaxation modulus
𝐸𝑟 (𝑡) = 𝐸2 exp (−𝑡𝐸2/𝜂2), where 𝑡 is time and 𝐸2 and 𝜂2 are material constants. Again,
body forces can be neglected. It is required that the root curvature 𝑤,11 (𝑥1 = 0, 𝑡) = 𝛼𝑡,
where 𝛼 is a constant curvature rate. Derive an expression for the required time-dependent
tip force 𝐹 (𝑡). [50%]
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2 (a) Using indicial notation, prove the following identities.

(i) ∫
𝑉
∇ × a 𝑑𝑉 =

∮
𝑆

n × a 𝑑𝑆 ,

where a is a vector and 𝑆 is a closed surface, with unit normal n, enclosing a
volume 𝑉 . [10%]

(ii)
∇𝑎 =

a
𝑎
,

where 𝑎 =
√

a · a is the magnitude of vector a. [10%]

(iii)
∇ × (a × b) = a (∇ · b) − b (∇ · a) + b · ∇a − a · ∇b ,

where a and b are vectors. [20%]

(b) For a deformation map x = 𝜙(X, 𝑡), F := ∇0𝜙(X, 𝑡) = 𝜕𝜙(X, 𝑡)/𝜕X is the
deformation gradient and 𝐽 := det F. Prove the following results:

(i) ∇ 𝑓 = F−𝑇∇0 𝑓 , where 𝑓 is a scalar. [10%]

(ii) ∇u = (∇0u)F−1, where u is a vector. [10%]

(iii) The Piola identity ∇0 · (𝐽F−𝑇 ) = 0, using Nanson’s formula n𝑑𝑠 = 𝐽F−𝑇N𝑑𝑆.
[10%]

(iv) ∇0 · (𝐽F−1v) = 𝐽∇ · v, where v is a vector. [10%]

(v) ∇0 · (𝐽AF−𝑇 ) = 𝐽∇ · A, where A is a second-order tensor. [10%]

(c) The equilibrium equation, neglecting inertia terms, on the reference domain Ω0 is
−∇0 ·P+b0 = 0, and on the spatial (current) domain Ω is −∇ ·𝝈 +b = 0. Using identities
in (b), give the expression for the nominal stress P in terms of the Cauchy stress 𝝈. [10%]
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3 (a) Consider a body that undergoes the deformation

x = 𝜙(X, 𝑡) = X + 𝛼(𝑡) (X · e2)e1,

where 𝛼 > 0 and e𝑖 is the canonical unit basis vector in the 𝑖th direction. Sketch the
deformed shape when 𝜙(X, 𝑡) is applied to a unit square and compute the Green–Lagrange
strain E := (1/2) (F𝑇F − I). [20%]

(b) A symmetric tensor A can be expressed as A =
∑
𝑖 𝜆𝑖a𝑖 ⊗ a𝑖, where 𝜆𝑖 are the

eigenvalues and a𝑖 are the normalised eigenvectors of A.
The deformation gradient F admits unique decompositions into stretch and (proper)
rotation tensors F = RU = VR, where U and V are symmetric with positive eigenvalues
and R is a rotation matrix.

(i) Show that the Green–Lagrange strain is not affected by rotations. [10%]

(ii) Explain why the eigenvalues of U and V are the same. [10%]

(iii) Give the Green–Lagrange strain in terms of the eigenvalues and eigenvectors
of the tensor U. [10%]

(iv) Give a physical interpretation of the eigenvalues and eigenvectors of U and V.
[20%]

(v) What is the relationship between the eigenvalues of U for an incompressible
problem? [10%]

(vi) Using the decompositions U =
∑
𝑖 𝜆𝑖u𝑖 ⊗ u𝑖 and V =

∑
𝑖 𝜆𝑖v𝑖 ⊗ v𝑖, give

an expression for the deformation gradient F in terms of the eigenvalues and
eigenvectors of U and V. Note that A(u⊗ v) = (Au) ⊗ v and (u⊗ v)A = u⊗ (A𝑇v).

[20%]

END OF PAPER
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ENGINEERING TRIPOS PART IIB 

Module 4C9 Continuum Mechanics 

Data sheet 

Indicial notation 

A repeated index implies summation  

 i ia=a e  i ia b =a b   

= c a b  can be written as  i ijk j kc e a b=  

𝑨 = 𝒂 ⊗ 𝒃  can be written as 𝐴𝑖𝑗 = 𝑎𝑖𝑏𝑗  

Kronecker delta:    ij =1 for i = j,  and ij = 0 for i j   

Note that   ij i j = e e  

Permutation symbol:   1ijke =   when , ,i j k  are in cyclic order 

   1ijke = −   when , ,i j k  are in anti-cyclic order 

   0ijke =   when any indices repeat 

e −   identity:    ijk ipq jp kq jq kpe e    = −  

grad ,i i  = = e  

div ,i iv= =v v  

curl ,ijk k j ie v= =v v e  

Gauss’s theorem (the divergence theorem): 

∫
𝜕𝐴𝑖𝑗

𝜕𝑥𝑗
𝑉

𝑑𝑉 = ∮ 𝐴𝑖𝑗𝑛𝑗

𝑆

𝑑𝑆 

Stokes’s theorem: 

∫ 𝑒𝑖𝑗𝑘

𝜕𝐴𝑝𝑘

𝜕𝑥𝑗
𝑆

𝑛𝑖𝑑𝑆 = ∮ 𝐴𝑝𝑘

𝐶

 𝑑𝑥𝑘 

  



2 
 

Isotropic linear elasticity 

Equilibrium:   𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  ,   𝜎𝑖𝑗 = 𝜎𝑗𝑖 

Compatibility:  𝜀𝑖𝑗,𝑘𝑝 + 𝜀𝑘𝑝,𝑖𝑗 − 𝜀𝑝𝑗,𝑘𝑖 − 𝜀𝑘𝑖,𝑝𝑗 = 0 

Constitutive relationships: 𝜎𝑖𝑗 =
𝐸

(1+𝜈)
𝜀𝑖𝑗 +

𝜈𝐸

(1+𝜈)(1−2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗    

Lame’s constants:    𝜇 = 𝐺 =
𝐸

2(1+𝜈)
    ,   𝜆 =

𝜈𝐸

(1+𝜈)(1−2𝜈)
  

The strain energy density 𝑈 is given by:   𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
 

At equilibrium, the potential energy Π is minimised. Hence, for any small 

kinematically admissible perturbation 𝛿𝑢𝑖 : 

𝛿Π = ∫ 𝛿𝑈𝑑𝑉

𝑉

− ∫ 𝑡𝑖
𝑒𝛿𝑢𝑖𝑑𝑆

𝑆

− ∫ 𝑏𝑖𝛿𝑢𝑖𝑑𝑉 = 0

𝑉

 

Definitions:  𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the infinitesimal strain tensor, 𝑏𝑖 is the body 

force vector, 𝑡𝑖
𝑒  is the external traction vector and 𝑢𝑖 is the displacement vector. 

Isotropic linear viscoelasticity 

Relaxation modulus, 𝐸𝑟(𝑡): 

if   ε(𝑡) = ε0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  σ(𝑡) = ε0𝐸𝑟(𝑡) 

Creep compliance, 𝐽𝑐(𝑡):  

if   σ(𝑡) = σ0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  ε(𝑡) = σ0𝐽𝑐(𝑡) 

The Laplace transforms of 𝐸𝑟(𝑡) and 𝐽𝑐(𝑡) are related by:   𝐸̅𝑟(𝑠) 𝐽𝑐̅(𝑠) =
1

𝑠2
 

Boltzmann superposition principle in 1D:  

𝜎(𝑡) = ∫
∂𝜀(𝜏)

∂τ
𝐸𝑟(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

𝜀(𝑡) = ∫
∂𝜎(𝜏)

∂τ
𝐽𝑐(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Correspondence principle:  in the Laplace domain, the viscoelastic solution 

corresponds to the elastic solution, with the substitution  𝐸 → 𝑠𝐸̅𝑟(𝑠) ,   𝜈 → 𝑠𝜈̅𝑟(𝑠)  

(for any time-dependent moduli).   
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