EGT3
ENGINEERING TRIPOS PART IIB

Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.
All questions carry the same number of marks.
The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Attachment: 4C9 datasheet (2 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Version GNW/2

1 A slender elastic cantilever beam has length L, width b and depth $2 h_{1}$, as shown in Fig. 1. There is zero displacement and rotation at the root $\left(x_{1}=0\right)$. The tip $\left(x_{1}=L\right)$ is unconstrained. The beam is coated by a viscoelastic layer of depth h_{2} and width b on both the top and bottom faces. A vertical force F is applied to the tip.
Infinitesimal deformations can be assumed, with the displacement field across all three layers given by

$$
\mathbf{u}\left(x_{1}, x_{2}\right)=w\left(x_{1}\right) \mathbf{e}_{2}-w_{, 1}\left(x_{1}\right) x_{2} \mathbf{e}_{1} .
$$

The initial position of a material point is $\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}, w$ is the deflection of a point on the beam centre-line (i.e. at $x_{2}=0$) and $w_{, 1}$ is the rotation of the cross-section, which is assumed to remain planar.
(a) The elastic portion of the beam has Young's modulus E_{1} and Poisson's ratio v_{1}. Explain why the elastic strain energy density in this part of the beam is given by

$$
U=\frac{1}{2} E_{1} \varepsilon_{11}^{2}
$$

where $\varepsilon_{i j}=\left(u_{i, j}+u_{j, i}\right) / 2$ are the infinitesimal strain components.
(b) Neglecting the viscoelastic layers (i.e. the case $h_{2}=0$), and neglecting any body forces, use the method of minimum potential energy to show that the beam deflection must satisfy $w_{, 1111}=0$ for $0 \leq x_{1} \leq L$. Write down the boundary conditions required to solve for $w\left(x_{1}\right)$, although a solution is not required.
(c) Now include the viscoelastic layers (i.e. $h_{2} \neq 0$), which have relaxation modulus $E_{r}(t)=E_{2} \exp \left(-t E_{2} / \eta_{2}\right)$, where t is time and E_{2} and η_{2} are material constants. Again, body forces can be neglected. It is required that the root curvature $w_{, 11}\left(x_{1}=0, t\right)=\alpha t$, where α is a constant curvature rate. Derive an expression for the required time-dependent tip force $F(t)$.

Fig. 1

Version GNW/2

2 (a) Using indicial notation, prove the following identities.
(i)

$$
\int_{V} \nabla \times \mathbf{a} d V=\oint_{S} \mathbf{n} \times \mathbf{a} d S,
$$

where \mathbf{a} is a vector and S is a closed surface, with unit normal \mathbf{n}, enclosing a volume V.
(ii)

$$
\nabla a=\frac{\mathbf{a}}{a},
$$

where $a=\sqrt{\mathbf{a} \cdot \mathbf{a}}$ is the magnitude of vector \mathbf{a}.
(iii)

$$
\nabla \times(\mathbf{a} \times \mathbf{b})=\mathbf{a}(\nabla \cdot \mathbf{b})-\mathbf{b}(\nabla \cdot \mathbf{a})+\mathbf{b} \cdot \nabla \mathbf{a}-\mathbf{a} \cdot \nabla \mathbf{b},
$$

where \mathbf{a} and \mathbf{b} are vectors.
(b) For a deformation map $\mathbf{x}=\phi(\mathbf{X}, t), \mathbf{F}:=\nabla_{0} \phi(\mathbf{X}, t)=\partial \phi(\mathbf{X}, t) / \partial \mathbf{X}$ is the deformation gradient and $J:=\operatorname{det} \mathbf{F}$. Prove the following results:
(i) $\quad \nabla f=\mathbf{F}^{-T} \nabla_{0} f$, where f is a scalar.
(ii) $\quad \nabla \mathbf{u}=\left(\nabla_{0} \mathbf{u}\right) \mathbf{F}^{-1}$, where \mathbf{u} is a vector.
(iii) The Piola identity $\nabla_{0} \cdot\left(J \mathbf{F}^{-T}\right)=\mathbf{0}$, using Nanson's formula $\mathbf{n} d s=J \mathbf{F}^{-T} \mathbf{N} d S$.
(iv) $\nabla_{0} \cdot\left(J \mathbf{F}^{-1} \mathbf{v}\right)=J \nabla \cdot \mathbf{v}$, where \mathbf{v} is a vector.
(v) $\nabla_{0} \cdot\left(J \mathbf{A F}^{-T}\right)=J \nabla \cdot \mathbf{A}$, where \mathbf{A} is a second-order tensor.
(c) The equilibrium equation, neglecting inertia terms, on the reference domain Ω_{0} is $-\nabla_{0} \cdot \mathbf{P}+\mathbf{b}_{0}=\mathbf{0}$, and on the spatial (current) domain Ω is $-\nabla \cdot \boldsymbol{\sigma}+\mathbf{b}=\mathbf{0}$. Using identities in (b), give the expression for the nominal stress \mathbf{P} in terms of the Cauchy stress σ.

Version GNW/2

3 (a) Consider a body that undergoes the deformation

$$
\mathbf{x}=\phi(\mathbf{X}, t)=\mathbf{X}+\alpha(t)\left(\mathbf{X} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{1},
$$

where $\alpha>0$ and \mathbf{e}_{i} is the canonical unit basis vector in the i th direction. Sketch the deformed shape when $\phi(\mathbf{X}, t)$ is applied to a unit square and compute the Green-Lagrange $\operatorname{strain} \mathbf{E}:=(1 / 2)\left(\mathbf{F}^{T} \mathbf{F}-\mathbf{I}\right)$.
(b) A symmetric tensor \mathbf{A} can be expressed as $\mathbf{A}=\sum_{i} \lambda_{i} \mathbf{a}_{i} \otimes \mathbf{a}_{i}$, where λ_{i} are the eigenvalues and \mathbf{a}_{i} are the normalised eigenvectors of \mathbf{A}.
The deformation gradient \mathbf{F} admits unique decompositions into stretch and (proper) rotation tensors $\mathbf{F}=\mathbf{R U}=\mathbf{V R}$, where \mathbf{U} and \mathbf{V} are symmetric with positive eigenvalues and \mathbf{R} is a rotation matrix.
(i) Show that the Green-Lagrange strain is not affected by rotations.
(ii) Explain why the eigenvalues of \mathbf{U} and \mathbf{V} are the same.
(iii) Give the Green-Lagrange strain in terms of the eigenvalues and eigenvectors of the tensor \mathbf{U}.
(iv) Give a physical interpretation of the eigenvalues and eigenvectors of \mathbf{U} and \mathbf{V}.
(v) What is the relationship between the eigenvalues of \mathbf{U} for an incompressible problem?
(vi) Using the decompositions $\mathbf{U}=\sum_{i} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i}$ and $\mathbf{V}=\sum_{i} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}$, give an expression for the deformation gradient \mathbf{F} in terms of the eigenvalues and eigenvectors of \mathbf{U} and \mathbf{V}. Note that $\mathbf{A}(\mathbf{u} \otimes \mathbf{v})=(\mathbf{A u}) \otimes \mathbf{v}$ and $(\mathbf{u} \otimes \mathbf{v}) \mathbf{A}=\mathbf{u} \otimes\left(\mathbf{A}^{T} \mathbf{v}\right)$.

END OF PAPER

THIS PAGE IS BLANK

ENGINEERING TRIPOS PART IIB

Module 4C9 Continuum Mechanics

Data sheet

Indicial notation

A repeated index implies summation
$\boldsymbol{a}=a_{i} \boldsymbol{e}_{i} \quad \boldsymbol{a} \cdot \boldsymbol{b}=a_{i} b_{i}$
$\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$ can be written as $c_{i}=e_{i j k} a_{j} b_{k}$
$\boldsymbol{A}=\boldsymbol{a} \otimes \boldsymbol{b}$ can be written as $A_{i j}=a_{i} b_{j}$
Kronecker delta: $\quad \delta_{i j}=1$ for $i=j$, and $\delta_{i j}=0$ for $i \neq j$

Note that $\delta_{i j}=\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}$
Permutation symbol: $e_{i j k}=1$ when i, j, k are in cyclic order
$e_{i j k}=-1$ when i, j, k are in anti-cyclic order
$e_{i j k}=0$ when any indices repeat
$e-\delta$ identity: $e_{i j k} e_{i p q}=\delta_{j p} \delta_{k q}-\delta_{j q} \delta_{k p}$
$\operatorname{grad} \phi=\nabla \phi=\phi_{i} \boldsymbol{e}_{i}$
$\operatorname{div} \boldsymbol{v}=\nabla \cdot \boldsymbol{v}=v_{i, i}$
$\operatorname{curl} \boldsymbol{v}=\nabla \times \boldsymbol{v}=e_{i j k} v_{k, j} \boldsymbol{e}_{i}$
Gauss's theorem (the divergence theorem):

$$
\int_{V} \frac{\partial A_{i j}}{\partial x_{j}} d V=\oint_{S} A_{i j} n_{j} d S
$$

Stokes's theorem:

$$
\int_{S} e_{i j k} \frac{\partial A_{p k}}{\partial x_{j}} n_{i} d S=\oint_{C} A_{p k} d x_{k}
$$

Isotropic linear elasticity

Equilibrium: $\sigma_{i j, j}+b_{i}=0 \quad, \quad \sigma_{i j}=\sigma_{j i}$
Compatibility: $\varepsilon_{i j, k p}+\varepsilon_{k p, i j}-\varepsilon_{p j, k i}-\varepsilon_{k i, p j}=0$
Constitutive relationships: $\quad \sigma_{i j}=\frac{E}{(1+v)} \varepsilon_{i j}+\frac{v E}{(1+v)(1-2 v)} \varepsilon_{k k} \delta_{i j}$
Lame's constants: $\quad \mu=G=\frac{E}{2(1+v)} \quad, \quad \lambda=\frac{v E}{(1+v)(1-2 v)}$
The strain energy density U is given by: $\sigma_{i j}=\frac{\partial U}{\partial \varepsilon_{i j}}$
At equilibrium, the potential energy Π is minimised. Hence, for any small kinematically admissible perturbation δu_{i} :

$$
\delta \Pi=\int_{V} \delta U d V-\int_{S} t_{i}^{e} \delta u_{i} d S-\int_{V} b_{i} \delta u_{i} d V=0
$$

Definitions: $\sigma_{i j}$ is the stress tensor, $\varepsilon_{i j}$ is the infinitesimal strain tensor, b_{i} is the body force vector, t_{i}^{e} is the external traction vector and u_{i} is the displacement vector.

Isotropic linear viscoelasticity

Relaxation modulus, $E_{r}(t)$:
if $\varepsilon(t)=\varepsilon_{0} H(t)$, where $H(t)=\left\{\begin{array}{ll}0 & t<0 \\ 1 & t>0\end{array} \quad\right.$, then $\sigma(t)=\varepsilon_{0} E_{r}(t)$
Creep compliance, $J_{c}(t)$:
if $\sigma(t)=\sigma_{0} H(t)$, where $H(t)=\left\{\begin{array}{ll}0 & t<0 \\ 1 & t>0\end{array} \quad\right.$, then $\varepsilon(t)=\sigma_{0} J_{c}(t)$
The Laplace transforms of $E_{r}(t)$ and $J_{c}(t)$ are related by: $\bar{E}_{r}(s) \bar{J}_{c}(s)=\frac{1}{s^{2}}$
Boltzmann superposition principle in 1D:

$$
\begin{aligned}
& \sigma(t)=\int_{0}^{t} \frac{\partial \varepsilon(\tau)}{\partial \tau} E_{r}(t-\tau) d \tau \\
& \varepsilon(t)=\int_{0}^{t} \frac{\partial \sigma(\tau)}{\partial \tau} J_{c}(t-\tau) d \tau
\end{aligned}
$$

Correspondence principle: in the Laplace domain, the viscoelastic solution corresponds to the elastic solution, with the substitution $E \rightarrow s \bar{E}_{r}(s), \quad v \rightarrow s \bar{v}_{r}(s)$ (for any time-dependent moduli).

