EGT3 ENGINEERING TRIPOS PART IIB

Monday 3 May 2021 1.30 to 3.10

Module 4C9

CONTINUUM MECHANICS

Answer not more than **two** questions.

All questions carry the same number of marks.

The **approximate** percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number <u>**not**</u> *your name on the cover sheet and at the top of each answer sheet.*

STATIONERY REQUIREMENTS

Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed. Attachment: 4C9 datasheet (2 pages). You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of the exam.

The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf containing all answers.

1 A thin-walled circular tube of length *L*, radius *R* and wall thickness *t* is loaded by a torque *T* as shown in Fig. 1. The tube is constrained such that the displacement $\mathbf{u} = 0$ at $x_1 = 0$. The initial position \mathbf{x} and displacement \mathbf{u} of a point on the tube wall (assuming plane stress, and infinitesimal strains and rotations) are given by

$$\mathbf{x} = x_1 \mathbf{e}_1 + R \mathbf{e}_3, \quad \mathbf{u} = u_2 (x_1) \mathbf{e}_2.$$

Due to the symmetry, this can describe any material point following a rotation of the orthonomal basis vectors $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ about the \mathbf{e}_1 direction.

The tube is 3D-printed from a linear elastic material. Due to printing defects, the Young's modulus and the wall thickness both vary with axial position, i.e. $E(x_1)$ and $t(x_1)$. At a given x_1 , these properties are constant around the circumference of the tube. The Poisson ratio v is constant everywhere.

(a) Show that the strain energy density $U(x_1)$ is given by:

$$U = \frac{E(x_1)}{4(1+\nu)} \left(u_{2,1}\right)^2.$$
[20%]

(b) Show that the potential energy Π is given by:

$$\Pi = \int_0^L \frac{\pi R}{2(1+\nu)} E(x_1) t(x_1) \left(u_{2,1}\right)^2 dx_1 - \frac{T}{R} u_2(L) .$$
[20%]

(c) Using the method of minimum potential energy, derive the governing equation for $u_2(x_1)$ along the length of the tube, and the associated boundary conditions. [50%]

(d) Measurements provide data for $E(x_1)$ and $t(x_1)$. Explain, without further calculation, how an expression for the rotation of the tube at $x_1 = L$ would be obtained. [10%]

Version GNW/4

Fig. 1

2 (a) The position vector **x** is defined using orthonormal basis vectors $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$. Use index notation to answer the following.

- (i) If $\phi(\mathbf{x})$ is a scalar field, show that $\nabla \times (\nabla \phi) = 0.$ [10%]
- (ii) For rotated orthonormal basis vectors $\hat{\mathbf{e}}_i = R_{ij}\mathbf{e}_j$, show that

$$R_{ip}R_{jp} = R_{pi}R_{pj} = \delta_{ij}.$$

[20%]

(iii) For the tensor $\mathbf{A} = A_{ij}\mathbf{e}_i \otimes \mathbf{e}_j = \hat{A}_{ij}\hat{\mathbf{e}}_i \otimes \hat{\mathbf{e}}_j$, derive an expression for the relationship between components A_{ij} , \hat{A}_{ij} , and R_{ij} . [20%]

(b) The Green-Lagrange strain is given by $\mathbf{E} := (1/2)(\mathbf{F}^{\top}\mathbf{F} - \mathbf{I})$, where \mathbf{F} is the deformation gradient and \mathbf{I} is the identity tensor. Express the Green-Lagrange strain using index notation, and use this to show that the Green-Lagrange strain reduces to the linearised strain measure for linearised kinematics. [10%]

(c) Consider a body in 3D that undergoes an arbitrary translation, plus a rotation about the X_3 axis.

(i)	Compute the deformation gradient F .	[10%]
(ii)	Without calculation, give det F. Explain your reasoning.	[5%]
(iii)	By considering an axis-aligned unit cube, demonstrate that $ds = JF^{-\top} dS$	5
(Nan	son's formula) holds.	[20%]
(iv)	Compute the Green–Lagrange strain.	[5%]

3 (a) The deformation gradient **F** can be decomposed as:

$$\mathbf{F} = \mathbf{R}\mathbf{U} = \mathbf{V}\mathbf{R},$$

where \mathbf{R} is a rotation, and \mathbf{U} and \mathbf{V} are symmetric. This is known as the polar decomposition.

(i) Using the singular value decomposition of a matrix $\mathbf{A} = \mathbf{W}\Sigma\mathbf{Z}^{\top}$, where \mathbf{W} and \mathbf{Z} are orthogonal matrices and Σ holds the singular values of \mathbf{A} , show that the polar decomposition of the deformation gradient exists. [30%]

(ii) Show that the stretch tensor U is symmetric and that all eigenvalues of U are positive. Comment on the physical significance of the eigenvalues being positive. [20%]

(iii) Comment on the significance of the polar decomposition for the definition of strain tensors. [10%]

(b) Starting from the balance of momentum in the material configuration

$$\rho_0 \ddot{\boldsymbol{\phi}} = \nabla_X \cdot \mathbf{P} + \rho_0 \mathbf{b}_m,$$

where ρ_0 is the reference density, ϕ is the deformation map, **P** is the first Piola–Kirchhoff stress and **b**_m is the material body force, show that **P** is work-conjgate to $\dot{\mathbf{F}}$. [10%]

(c) The Hu–Washizu variational principle involves a total potential energy functional of the form

$$\Pi(\boldsymbol{\phi}, \mathbf{F}, \mathbf{P}) := \int_{\Omega_0} \psi(\mathbf{F}) \, \mathrm{d}V + \int_{\Omega_0} \mathbf{P} : (\nabla_X \boldsymbol{\phi} - \mathbf{F}) \, \mathrm{d}V - \Pi_{\text{external}}(\boldsymbol{\phi}),$$

where ϕ , **F** and **P** are treated as independent variables and Π_{external} is associated with loadings. If equilibrium corresponds to a stationary point of Π , give any relationships that must exist between ψ , ϕ , **F** and **P** at equilibrium. [30%]

END OF PAPER

Version GNW/4

THIS PAGE IS BLANK

ENGINEERING TRIPOS PART IIB

Module 4C9 Continuum Mechanics

Data sheet

Indicial notation

A repeated index implies summation

7

$$a = a_i e_i$$
 $a \cdot b = a_i b_i$
 $c = a \times b$ can be written as $c_i = e_{ijk} a_j b_k$
 $A = a \otimes b$ can be written as $A_{ij} = a_i b_j$
Kronecker delta: $\delta_{ij} = 1$ for $i = j$, and $\delta_{ij} = 0$ for $i \neq j$

Note that $\delta_{ij} = \boldsymbol{e}_i \cdot \boldsymbol{e}_j$

Permutation symbol: $e_{ijk} = 1$ when i, j, k are in cyclic order

 $e_{ijk} = -1$ when i, j, k are in anti-cyclic order $e_{ijk} = 0$ when any indices repeat

$$e - \delta$$
 identity: $e_{ijk}e_{ipq} = \delta_{jp}\delta_{kq} - \delta_{jq}\delta_{kp}$

grad
$$\phi = \nabla \phi = \phi_{,i} e_i$$

 $\operatorname{div} \boldsymbol{v} = \nabla \cdot \boldsymbol{v} = v_{i,i}$

 $\operatorname{curl} \boldsymbol{v} = \nabla \times \boldsymbol{v} = e_{ijk} v_{k,j} \boldsymbol{e}_i$

Gauss's theorem (the divergence theorem):

$$\int_{V} \frac{\partial A_{ij}}{\partial x_j} dV = \oint_{S} A_{ij} n_j \, dS$$

Stokes's theorem:

$$\int_{S} e_{ijk} \frac{\partial A_{pk}}{\partial x_j} n_i dS = \oint_{C} A_{pk} dx_k$$

Isotropic linear elasticity

Equilibrium: $\sigma_{ij,j} + b_i = 0$, $\sigma_{ij} = \sigma_{ji}$ Compatibility: $\varepsilon_{ij,kp} + \varepsilon_{kp,ij} - \varepsilon_{pj,ki} - \varepsilon_{ki,pj} = 0$ Constitutive relationships: $\sigma_{ij} = \frac{E}{(1+\nu)} \varepsilon_{ij} + \frac{\nu E}{(1+\nu)(1-2\nu)} \varepsilon_{kk} \delta_{ij}$ Lame's constants: $\mu = G = \frac{E}{2(1+\nu)}$, $\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$ The strain energy density *U* is given by: $\sigma_{ij} = \frac{\partial U}{\partial \varepsilon_{ij}}$

At equilibrium, the potential energy Π is minimised. Hence, for any small kinematically admissible perturbation δu_i :

$$\delta \Pi = \int_{V} \delta U dV - \int_{S} t_{i}^{e} \delta u_{i} dS - \int_{V} b_{i} \delta u_{i} dV = 0$$

Definitions: σ_{ij} is the stress tensor, ε_{ij} is the infinitesimal strain tensor, b_i is the body force vector, t_i^e is the external traction vector and u_i is the displacement vector.

Isotropic linear viscoelasticity

Relaxation modulus, $E_r(t)$:

if
$$\varepsilon(t) = \varepsilon_0 H(t)$$
, where $H(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$, then $\sigma(t) = \varepsilon_0 E_r(t)$

Creep compliance, $J_c(t)$:

if $\sigma(t) = \sigma_0 H(t)$, where $H(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$, then $\varepsilon(t) = \sigma_0 J_c(t)$

The Laplace transforms of $E_r(t)$ and $J_c(t)$ are related by: $\overline{E}_r(s)\overline{J}_c(s) = \frac{1}{s^2}$ Boltzmann superposition principle in 1D:

$$\sigma(t) = \int_{0}^{t} \frac{\partial \varepsilon(\tau)}{\partial \tau} E_{r}(t-\tau) d\tau$$
$$\varepsilon(t) = \int_{0}^{t} \frac{\partial \sigma(\tau)}{\partial \tau} J_{c}(t-\tau) d\tau$$

Correspondence principle: in the Laplace domain, the viscoelastic solution corresponds to the elastic solution, with the substitution $E \to s\bar{E}_r(s)$, $v \to s\bar{v}_r(s)$ (for any time-dependent moduli).