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ENGINEERING TRIPOS PART IIB

Monday 3 May 2021 1.30 to 3.10

Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Attachment: 4C9 datasheet (2 pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 A thin-walled circular tube of length 𝐿, radius 𝑅 and wall thickness 𝑡 is loaded by a
torque 𝑇 as shown in Fig. 1. The tube is constrained such that the displacement u = 0 at
𝑥1 = 0. The initial position x and displacement u of a point on the tube wall (assuming
plane stress, and infinitesimal strains and rotations) are given by

x = 𝑥1e1 + 𝑅e3, u = 𝑢2
(
𝑥1
)
e2.

Due to the symmetry, this can describe any material point following a rotation of the
orthonomal basis vectors

(
e1, e2, e3

)
about the e1 direction.

The tube is 3D-printed from a linear elastic material. Due to printing defects, the Young’s
modulus and the wall thickness both vary with axial position, i.e. 𝐸

(
𝑥1
)

and 𝑡
(
𝑥1
)
. At a

given 𝑥1, these properties are constant around the circumference of the tube. The Poisson
ratio 𝜈 is constant everywhere.

(a) Show that the strain energy density 𝑈
(
𝑥1
)

is given by:

𝑈 =
𝐸
(
𝑥1
)

4 (1 + 𝜈)

(
𝑢2,1

)2
.

[20%]

(b) Show that the potential energy Π is given by:

Π =

∫ 𝐿

0

𝜋𝑅

2 (1 + 𝜈)𝐸
(
𝑥1
)
𝑡
(
𝑥1
) (
𝑢2,1

)2
𝑑𝑥1 −

𝑇

𝑅
𝑢2 (𝐿) .

[20%]

(c) Using the method of minimum potential energy, derive the governing equation for
𝑢2

(
𝑥1
)

along the length of the tube, and the associated boundary conditions. [50%]

(d) Measurements provide data for 𝐸
(
𝑥1
)

and 𝑡
(
𝑥1
)
. Explain, without further

calculation, how an expression for the rotation of the tube at 𝑥1 = 𝐿 would be obtained. [10%]
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2 (a) The position vector x is defined using orthonormal basis vectors
(
e1, e2, e3

)
.

Use index notation to answer the following.

(i) If 𝜙 (x) is a scalar field, show that ∇ ×
(
∇𝜙

)
= 0. [10%]

(ii) For rotated orthonormal basis vectors ê𝑖 = 𝑅𝑖 𝑗e 𝑗 , show that

𝑅𝑖𝑝𝑅 𝑗 𝑝 = 𝑅𝑝𝑖𝑅𝑝 𝑗 = 𝛿𝑖 𝑗 .

[20%]

(iii) For the tensor A = 𝐴𝑖 𝑗e𝑖 ⊗ e 𝑗 = 𝐴̂𝑖 𝑗 ê𝑖 ⊗ ê 𝑗 , derive an expression for the
relationship between components 𝐴𝑖 𝑗 , 𝐴̂𝑖 𝑗 , and 𝑅𝑖 𝑗 . [20%]

(b) The Green–Lagrange strain is given by E := (1/2) (F>F − I), where F is the
deformation gradient and I is the identity tensor. Express the Green–Lagrange strain
using index notation, and use this to show that the Green–Lagrange strain reduces to the
linearised strain measure for linearised kinematics. [10%]

(c) Consider a body in 3D that undergoes an arbitrary translation, plus a rotation about
the 𝑋3 axis.

(i) Compute the deformation gradient F. [10%]

(ii) Without calculation, give det F. Explain your reasoning. [5%]

(iii) By considering an axis-aligned unit cube, demonstrate that ds = 𝐽F−> dS
(Nanson’s formula) holds. [20%]

(iv) Compute the Green–Lagrange strain. [5%]
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3 (a) The deformation gradient F can be decomposed as:

F = RU = VR,

where R is a rotation, and U and V are symmetric. This is known as the polar
decomposition.

(i) Using the singular value decomposition of a matrix A = WΣZ>, where W
and Z are orthogonal matrices and Σ holds the singular values of A, show that the
polar decomposition of the deformation gradient exists. [30%]

(ii) Show that the stretch tensor U is symmetric and that all eigenvalues of U are
positive. Comment on the physical significance of the eigenvalues being positive. [20%]

(iii) Comment on the significance of the polar decomposition for the definition of
strain tensors. [10%]

(b) Starting from the balance of momentum in the material configuration

𝜌0 ¥𝝓 = ∇𝑋 · P + 𝜌0b𝑚 ,

where 𝜌0 is the reference density, 𝝓 is the deformation map, P is the first Piola–Kirchhoff
stress and b𝑚 is the material body force, show that P is work-conjgate to ¤F. [10%]

(c) The Hu–Washizu variational principle involves a total potential energy functional
of the form

Π(𝝓,F,P) :=
∫
Ω0

𝜓(F) d𝑉 +
∫
Ω0

P : (∇𝑋𝝓 − F) d𝑉 − Πexternal(𝝓),

where 𝝓, F and P are treated as independent variables and Πexternal is associated with
loadings. If equilibrium corresponds to a stationary point of Π, give any relationships that
must exist between 𝜓, 𝝓, F and P at equilibrium. [30%]

END OF PAPER
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ENGINEERING TRIPOS PART IIB 

Module 4C9 Continuum Mechanics 

Data sheet 

Indicial notation 

A repeated index implies summation  

 i ia=a e  i ia b =a b   

= c a b  can be written as  i ijk j kc e a b=  

𝑨 = 𝒂 ⊗ 𝒃  can be written as 𝐴𝑖𝑗 = 𝑎𝑖𝑏𝑗  

Kronecker delta:    ij =1 for i = j,  and ij = 0 for i j   

Note that   ij i j = e e  

Permutation symbol:   1ijke =   when , ,i j k  are in cyclic order 

   1ijke = −   when , ,i j k  are in anti-cyclic order 

   0ijke =   when any indices repeat 

e −   identity:    ijk ipq jp kq jq kpe e    = −  

grad ,i i  = = e  

div ,i iv= =v v  

curl ,ijk k j ie v= =v v e  

Gauss’s theorem (the divergence theorem): 

∫
𝜕𝐴𝑖𝑗

𝜕𝑥𝑗
𝑉

𝑑𝑉 = ∮ 𝐴𝑖𝑗𝑛𝑗

𝑆

𝑑𝑆 

Stokes’s theorem: 

∫ 𝑒𝑖𝑗𝑘

𝜕𝐴𝑝𝑘

𝜕𝑥𝑗
𝑆

𝑛𝑖𝑑𝑆 = ∮ 𝐴𝑝𝑘

𝐶

 𝑑𝑥𝑘 
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Isotropic linear elasticity 

Equilibrium:   𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  ,   𝜎𝑖𝑗 = 𝜎𝑗𝑖 

Compatibility:  𝜀𝑖𝑗,𝑘𝑝 + 𝜀𝑘𝑝,𝑖𝑗 − 𝜀𝑝𝑗,𝑘𝑖 − 𝜀𝑘𝑖,𝑝𝑗 = 0 

Constitutive relationships: 𝜎𝑖𝑗 =
𝐸

(1+𝜈)
𝜀𝑖𝑗 +

𝜈𝐸

(1+𝜈)(1−2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗    

Lame’s constants:    𝜇 = 𝐺 =
𝐸

2(1+𝜈)
    ,   𝜆 =

𝜈𝐸

(1+𝜈)(1−2𝜈)
  

The strain energy density 𝑈 is given by:   𝜎𝑖𝑗 =
𝜕𝑈

𝜕𝜀𝑖𝑗
 

At equilibrium, the potential energy Π is minimised. Hence, for any small 

kinematically admissible perturbation 𝛿𝑢𝑖 : 

𝛿Π = ∫ 𝛿𝑈𝑑𝑉

𝑉

− ∫ 𝑡𝑖
𝑒𝛿𝑢𝑖𝑑𝑆

𝑆

− ∫ 𝑏𝑖𝛿𝑢𝑖𝑑𝑉 = 0

𝑉

 

Definitions:  𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the infinitesimal strain tensor, 𝑏𝑖 is the body 

force vector, 𝑡𝑖
𝑒  is the external traction vector and 𝑢𝑖 is the displacement vector. 

Isotropic linear viscoelasticity 

Relaxation modulus, 𝐸𝑟(𝑡): 

if   ε(𝑡) = ε0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  σ(𝑡) = ε0𝐸𝑟(𝑡) 

Creep compliance, 𝐽𝑐(𝑡):  

if   σ(𝑡) = σ0𝐻(𝑡) , where 𝐻(𝑡) = {0 𝑡 < 0
1 𝑡 > 0

,  then  ε(𝑡) = σ0𝐽𝑐(𝑡) 

The Laplace transforms of 𝐸𝑟(𝑡) and 𝐽𝑐(𝑡) are related by:   𝐸̅𝑟(𝑠) 𝐽𝑐̅(𝑠) =
1

𝑠2 

Boltzmann superposition principle in 1D:  

𝜎(𝑡) = ∫
∂𝜀(𝜏)

∂τ
𝐸𝑟(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

𝜀(𝑡) = ∫
∂𝜎(𝜏)

∂τ
𝐽𝑐(𝑡 − 𝜏)𝑑𝜏

𝑡

0

 

Correspondence principle:  in the Laplace domain, the viscoelastic solution 

corresponds to the elastic solution, with the substitution  𝐸 → 𝑠𝐸̅𝑟(𝑠) ,   𝜈 → 𝑠𝜈̅𝑟(𝑠)  

(for any time-dependent moduli).   


