

EGT3  
ENGINEERING TRIPPOS PART IIB

---

---

Monday 12 May 2025      2.00 to 3.40

---

**Module 4D10**

**STRUCTURAL STEELWORK**

*Answer not more than **three** questions.*

*All questions carry the same number of marks.*

*The approximate percentage of marks allocated to each part of a question is indicated in the right margin.*

*Write your candidate number not your name on the cover sheet.*

**STATIONERY REQUIREMENTS**

Single-sided script paper

**SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM**

CUED approved calculator allowed

Attachment: 4D10 Structural Steelwork data sheet (17 pages)

Engineering Data Book

**10 minutes reading time is allowed for this paper at the start of the exam.**

**You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.**

**You may not remove any stationery from the Examination Room.**

1 A grade S420 UB 406×140×39 steel beam is continuous over two equal spans, as shown in Fig. 1 (a), and carries a point load  $P$  in the middle of each span. Each span length is 6m. The self-weight of the beam may be neglected.

(a) Assume that the beam is continuously laterally restrained along its length. Calculate the maximum design load  $P$  which the beam can sustain, based on the development of a plastic hinge mechanism. [20%]

(b) Determine which class the cross-section belongs to for local buckling. Does the result justify the calculations in part (a)? [30%]

Note: The radius of the web-to-flange transition in a UB 406×140×39 is  $r = 10$  mm.

(c) If the beam were only laterally restrained at the locations of the point loads and the supports, calculate the maximum design load  $P$  which the beam can sustain before failing in lateral-torsional buckling. The ends of the beam are free to warp under torsion. The elastic bending moment diagram of the beam is given in Fig. 1 (b). [50%]

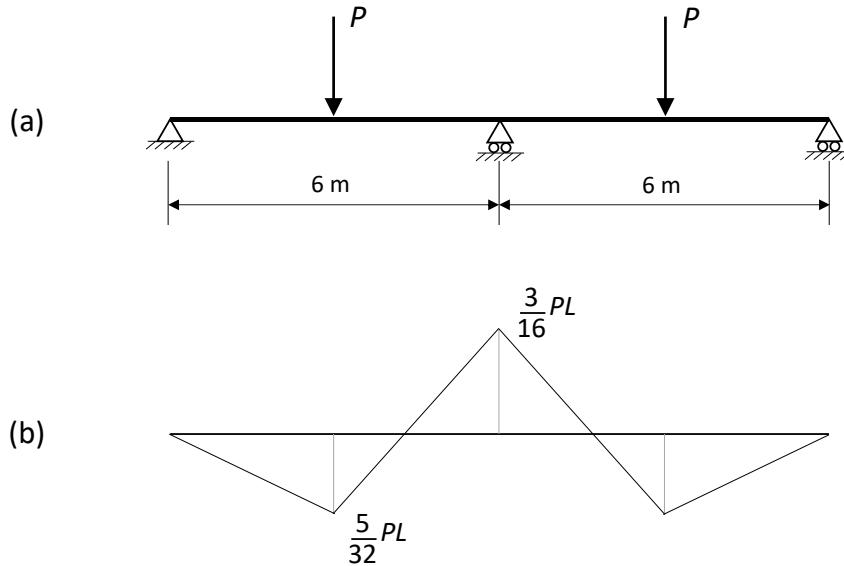
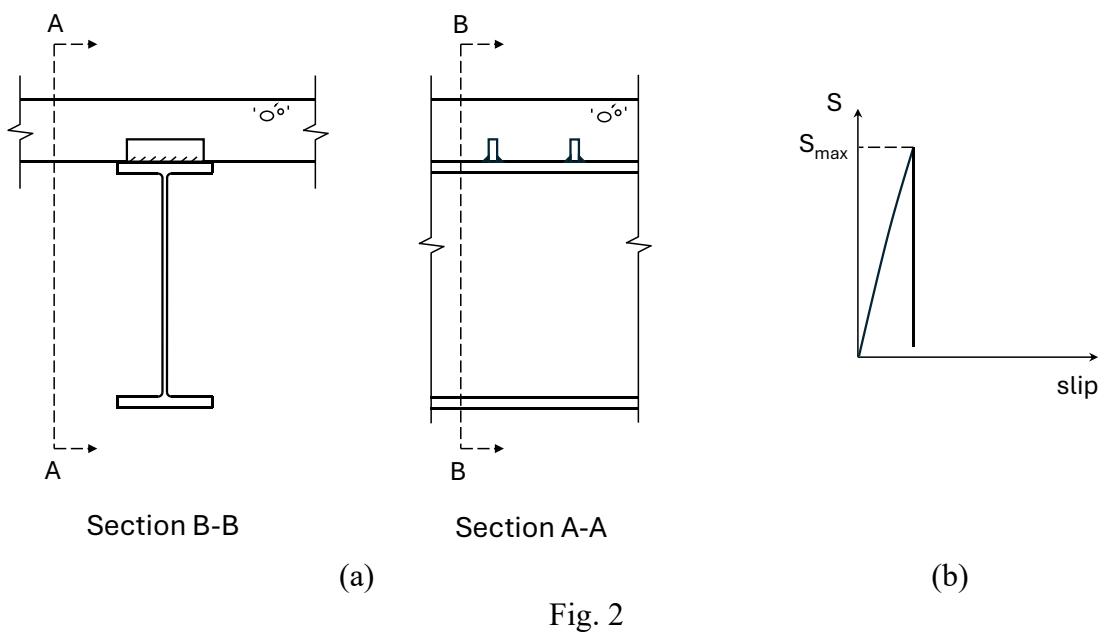



Fig. 1

2 A square welded box section is used as a compressed strut with an effective length of 6.5 m. The outside dimension of the box is 170 mm and its thickness is 3 mm. The steel grade is S355.


- (a) Calculate the capacity of the strut. [40%]
- (b) While keeping the steel cross-sectional area of the box constant, reduce the side dimension (increasing the thickness) until the cross-section becomes fully effective. Recalculate the capacity of the strut with the cross-section thus obtained. [40%]
- (c) Use parts (a) and (b) to explain in more general terms why thin-walled structures typically have high strength-to-weight ratios. [20%]

3 The composite floor system shown in Fig. 2 (a) consists of UB 533×210×92 beams supporting a 150 mm thick concrete floor slab. The grade of the steel beams is S355 and the concrete is class C30/37. The beams span 10 m, are simply supported, and are spaced at 2 m distance.

In addition to its self-weight, the composite beam carries an (unfactored) permanent line load of 25 kN/m and an (unfactored) imposed line load of 15 kN/m. The beams are propped during construction.

The shear connectors consist of 150 mm long and 60 mm wide steel strips cut from a 16 mm plate. Their load-slip behaviour is illustrated in Fig. 2 (b), from which it is determined that they can resist a maximum design shear force of 125 kN.

- (a) Conceptually sketch a Eurocode-approved test set-up which would allow you to experimentally obtain the graph in Fig. 2 (b). [20%]
- (b) Comment on the appropriateness (or otherwise) of using a plastic design method to determine the number of shear connectors in this beam. [10%]
- (c) Determine the required connector spacing near the supports of the beam to ensure fully composite action at the ULS. [35%]
- (d) If the connectors were replaced by conventional headed studs with a diameter of 19 mm and an ultimate tensile strength of 500 MPa, determine an arrangement which ensures fully composite action at the ULS. [35%]



4 Figure 3 shows a haunched eaves connection in a portal frame. The rafter consists of a UB 533×210×92. The haunch is also cut from a UB 533×210×92. All steel components are made of grade S355 steel ( $f_u = 490$  MPa).

At the connection, the rafter simultaneously carries a hogging moment of 500 kNm, a shear force of 200 kN, and a compressive axial force of 120 kN. These are factored values.

- (a) For the bolt arrangement shown in Fig. 3, determine the bolt size necessary to avoid bolt fracture. Grade 10.9 bolts should be used. [30%]
- (b) The rafter end is welded to an end plate using a fillet weld, placed all around the perimeter of the universal beam and haunch, as indicated in Fig. 3. Determine the size of this fillet weld, based on the following two checks:
  - (i) the strength of the fillet weld surrounding the outside flanges.
  - (ii) the strength of the fillet weld at the location in the web with maximum shear stress.
- Use a single fillet weld size for the whole perimeter. [60%]
- (c) List two types of welding procedures which might be suitable for use in this connection. [10%]

Note 1: The safety factor  $\gamma_{M2}$  may be taken as 1.1.

Note 2: The roof pitch may be neglected and the rafter can be considered to be horizontal.

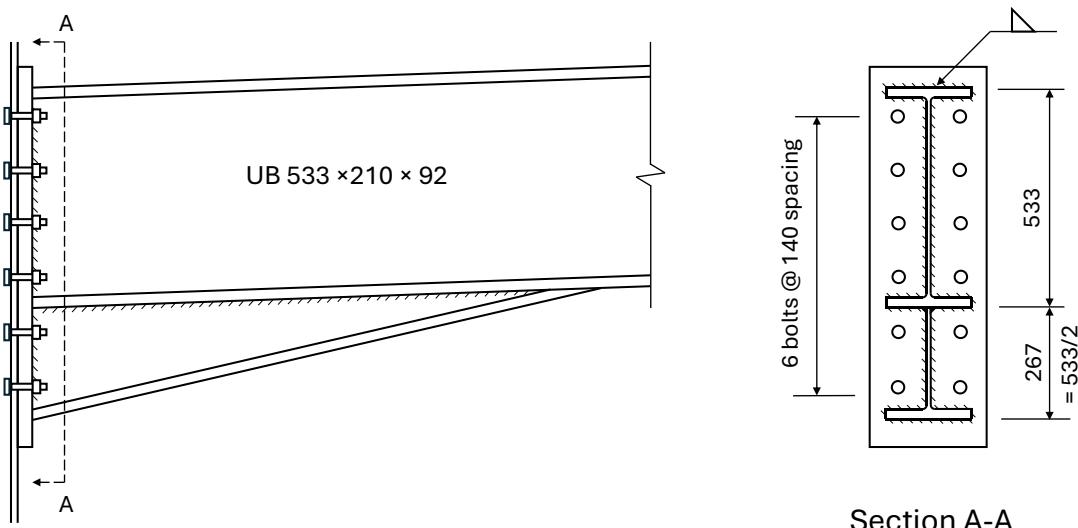



Fig. 3 (All dimensions in mm)

**END OF PAPER**

THIS PAGE IS BLANK

## Data Sheets

DO NOT USE FOR ACTUAL DESIGN OF STRUCTURAL STEELWORK

---

## DS1: Basic Buckling Resistance Curves

BS EN 1993-1-1:2005  
EN 1993-1-1:2005 (E)

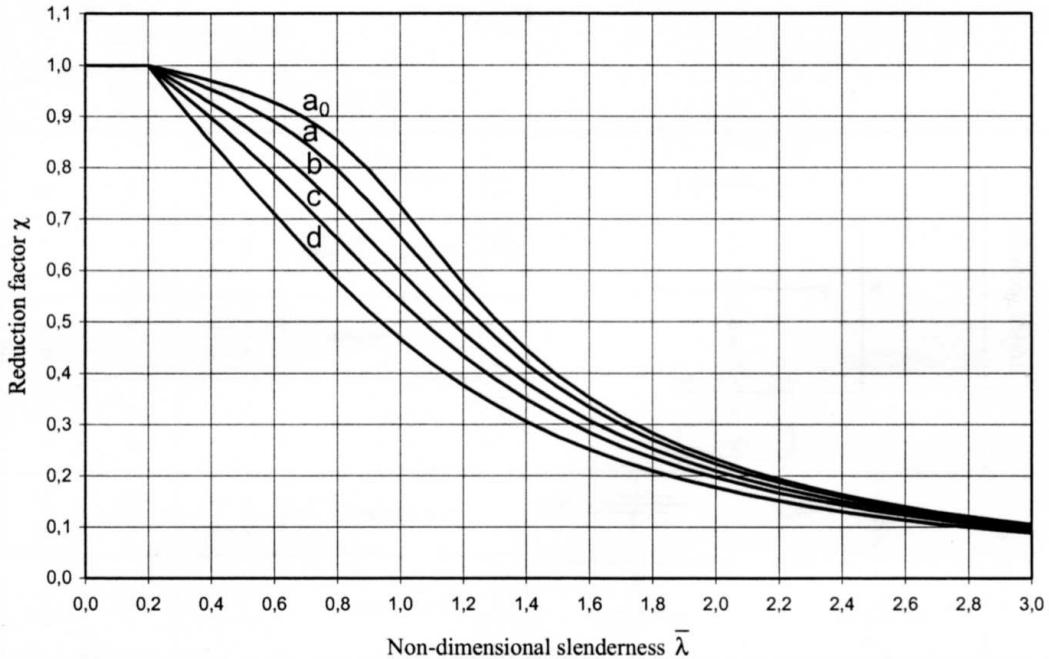
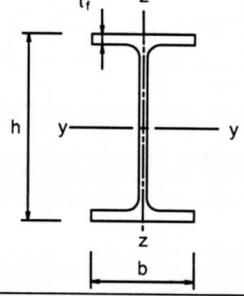
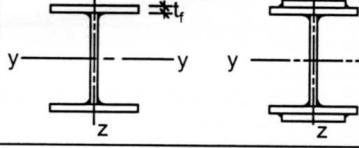
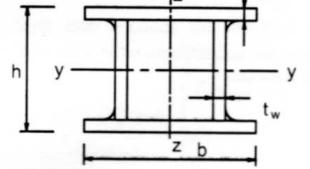
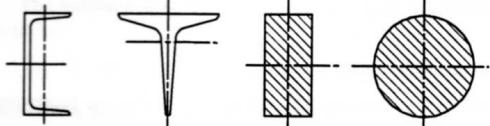
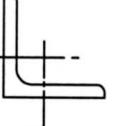



Figure 6.4: Buckling curves

The curves are defined by  $\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \bar{\lambda}^2}}$  in which  $\Phi \equiv \frac{1 + \alpha(\bar{\lambda} - 0,2) + \bar{\lambda}^2}{2}$






and the imperfection factor  $\alpha$  appropriate for each curve is:

| Buckling curve               | $a_0$ | $a$  | $b$  | $c$  | $d$  |
|------------------------------|-------|------|------|------|------|
| Imperfection factor $\alpha$ | 0.13  | 0.21 | 0.34 | 0.49 | 0.76 |

## DS2: Basic Resistance Curve Selection for Flexural Buckling

BS EN 1993-1-1:2005  
EN 1993-1-1:2005 (E)

Table 6.2: Selection of buckling curve for a cross-section

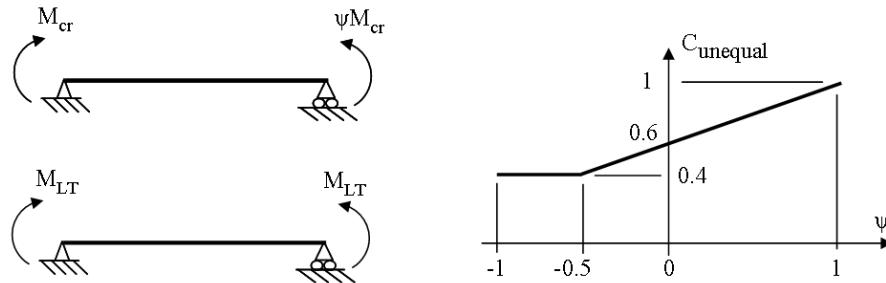
| Cross section            |                                                                                     | Limits                                                    | Buckling about axis                                  | Buckling curve |       |
|--------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------|-------|
|                          |                                                                                     |                                                           |                                                      | S 235          | S 275 |
| Rolled sections          |    | $h/b > 1,2$                                               | $t_f \leq 40 \text{ mm}$<br>$y - y$<br>$z - z$       | a              | $a_0$ |
|                          |                                                                                     |                                                           | $40 \text{ mm} < t_f \leq 100$<br>$y - y$<br>$z - z$ | b              | a     |
|                          |                                                                                     | $h/b \leq 1,2$                                            | $t_f \leq 100 \text{ mm}$<br>$y - y$<br>$z - z$      | b              | a     |
|                          |                                                                                     |                                                           | $t_f > 100 \text{ mm}$<br>$y - y$<br>$z - z$         | d              | c     |
| Welded I-sections        |   | $t_f \leq 40 \text{ mm}$<br>$y - y$<br>$z - z$            | b                                                    | b              | c     |
|                          |                                                                                     | $t_f > 40 \text{ mm}$<br>$y - y$<br>$z - z$               | c                                                    | d              | d     |
| Hollow sections          |  | hot finished                                              | any                                                  | a              | $a_0$ |
|                          |                                                                                     | cold formed                                               | any                                                  | c              | c     |
| Welded box sections      |  | generally (except as below)                               | any                                                  | b              | b     |
|                          |                                                                                     | thick welds: $a > 0,5t_f$<br>$b/t_f < 30$<br>$h/t_w < 30$ | any                                                  | c              | c     |
| U, T- and solid sections |  | any                                                       | c                                                    | c              | c     |
| L-sections               |  | any                                                       | b                                                    | b              | b     |

## DS3: Lateral-Torsional Buckling Equations

### Critical Moment

The critical magnitude of equal-and-opposite end-moments to cause elastic lateral torsional buckling of a beam is:

$$M_{LT} = \frac{\pi}{L} \sqrt{EI\Gamma} \sqrt{1 + \frac{\pi^2 E\Gamma}{L^2 GJ}}$$


where  $EI$ ,  $GJ$  and  $E\Gamma$  are the minor axis flexural rigidity, the torsional rigidity and the warping rigidity respectively. (It is assumed that the supports prevent vertical, lateral and torsional deflections but do not restrain warping.)

For a doubly-symmetric I-beam

$$\Gamma \approx \frac{ID^2}{4}$$

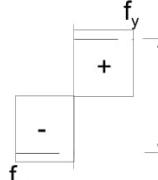
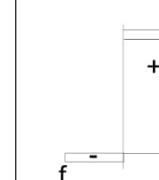
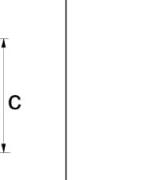
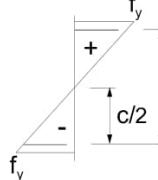
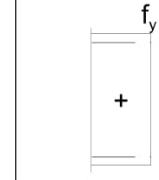
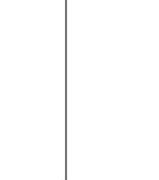
where  $D$  is the distance between flange centroids and  $I$  is the second moment of area of the section about its minor axis.

### Unequal end moments



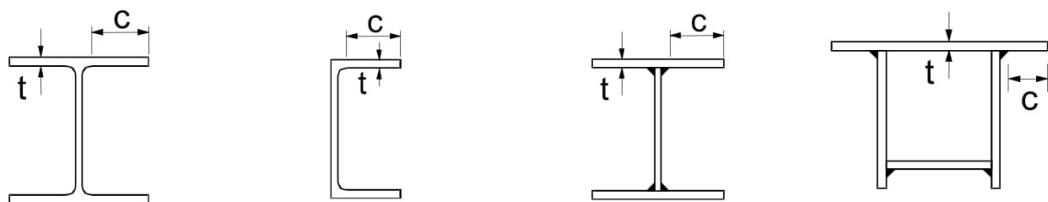
$$M_{cr} = \frac{M_{LT}}{C_{\text{unequal}}} \quad \text{where } C_{\text{unequal}} = \max(0.6 + 0.4\psi, 0.4)$$

### Lateral torsional buckling curve selection

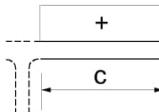
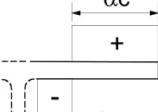
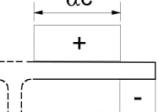
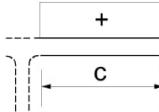
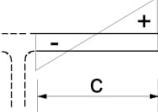
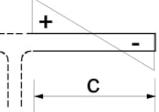






For lateral torsional buckling, the buckling resistance curves (DS1) may be used, with curves selected via the table below. Height  $h$  and width  $b$  are defined in DS2.

|                   | Limits       | Curve |
|-------------------|--------------|-------|
| Rolled I-sections | $h/b \leq 2$ | a     |
|                   | $h/b > 2$    | b     |
| Welded I-sections | $h/b \leq 2$ | c     |
|                   | $h/b > 2$    | d     |
| Other             | -            | d     |

# DS4: Thin-walled Structures


## Cross-sectional classification

(EN 1993-1-1; Table 5.2)







| <b>Internal compression parts</b>                   |                                                                                     |                                                                                     |                                                                                                                                                     |
|-----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Class                                               | Part subject to bending                                                             | Part subject to compression                                                         | Part subject to bending and compression                                                                                                             |
| Stress distribution in parts (compression positive) |   |   |                                                                   |
| 1                                                   | $c/t \leq 72\epsilon$                                                               | $c/t \leq 33\epsilon$                                                               | $\text{when } \alpha > 0,5: c/t \leq \frac{396\epsilon}{13\alpha - 1}$<br>$\text{when } \alpha \leq 0,5: c/t \leq \frac{36\epsilon}{\alpha}$        |
| 2                                                   | $c/t \leq 83\epsilon$                                                               | $c/t \leq 38\epsilon$                                                               | $\text{when } \alpha > 0,5: c/t \leq \frac{456\epsilon}{13\alpha - 1}$<br>$\text{when } \alpha \leq 0,5: c/t \leq \frac{41,5\epsilon}{\alpha}$      |
| Stress distribution in parts (compression positive) |  |  |                                                                  |
| 3                                                   | $c/t \leq 124\epsilon$                                                              | $c/t \leq 42\epsilon$                                                               | $\text{when } \psi > -1: c/t \leq \frac{42\epsilon}{0,67 + 0,33\psi}$<br>$\text{when } \psi \leq -1^*: c/t \leq 62\epsilon(1 - \psi)\sqrt{(-\psi)}$ |
| $\epsilon = \sqrt{235/f_y}$                         |                                                                                     | $f_y$<br>$\epsilon$                                                                 | 235<br>1,00                                                                                                                                         |
|                                                     |                                                                                     | 275<br>0,92                                                                         | 355<br>0,81                                                                                                                                         |
|                                                     |                                                                                     | 420<br>0,75                                                                         | 460<br>0,71                                                                                                                                         |

\*)  $\psi \leq -1$  applies where either the compression stress  $\sigma \leq f_y$  or the tensile strain  $\epsilon_y > f_y/E$

**Outstand flanges**



Rolled sections
Welded sections

| Class                                               | Part subject to compression                                                        | Part subject to bending and compression                                            |                                                                                      |      |      |      |      |
|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|------|------|------|
|                                                     |                                                                                    | Tip in compression                                                                 | Tip in tension                                                                       |      |      |      |      |
| Stress distribution in parts (compression positive) |   |   |   |      |      |      |      |
| 1                                                   | $c/t \leq 9\epsilon$                                                               | $c/t \leq \frac{9\epsilon}{\alpha}$                                                | $c/t \leq \frac{9\epsilon}{\alpha\sqrt{\alpha}}$                                     |      |      |      |      |
| 2                                                   | $c/t \leq 10\epsilon$                                                              | $c/t \leq \frac{10\epsilon}{\alpha}$                                               | $c/t \leq \frac{10\epsilon}{\alpha\sqrt{\alpha}}$                                    |      |      |      |      |
| Stress distribution in parts (compression positive) |  |  |  |      |      |      |      |
| 3                                                   | $c/t \leq 14\epsilon$                                                              | $c/t \leq 21\epsilon\sqrt{k_\sigma}$<br>For $k_\sigma$ see EN 1993-1-5             |                                                                                      |      |      |      |      |
| $\epsilon = \sqrt{235/f_y}$                         |                                                                                    | $f_y$                                                                              | 235                                                                                  | 275  | 355  | 420  | 460  |
|                                                     |                                                                                    | $\epsilon$                                                                         | 1,00                                                                                 | 0,92 | 0,81 | 0,75 | 0,71 |

## Local buckling of plates

$$\sigma_{cr} = K \frac{\pi^2 E}{12(1 - \nu^2)} \left( \frac{t}{b} \right)^2$$

where  $b$  is the width of the plate and  $t$  is its thickness.

- For plates in uniform longitudinal compression:

$$K = 4 \quad \text{for internal elements.}$$

$$K = 0.43 \quad \text{for outstand elements.}$$

- For plates under in-plane bending (EN 1993-1-5):  $K = k_\sigma$

**Table 4.1: Internal compression elements**

| Stress distribution (compression positive) |     | Effective <sup>p</sup> width $b_{\text{eff}}$                                                                                                          |                                 |
|--------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                            |     | $\underline{\psi = 1}:$<br>$b_{\text{eff}} = \rho \bar{b}$<br>$b_{e1} = 0,5 b_{\text{eff}} \quad b_{e2} = 0,5 b_{\text{eff}}$                          |                                 |
|                                            |     | $\underline{1 > \psi \geq 0}:$<br>$b_{\text{eff}} = \rho \bar{b}$<br>$b_{e1} = \frac{2}{5-\psi} b_{\text{eff}} \quad b_{e2} = b_{\text{eff}} - b_{e1}$ |                                 |
|                                            |     | $\underline{\psi < 0}:$<br>$b_{\text{eff}} = \rho b_c = \rho \bar{b} / (1-\psi)$<br>$b_{e1} = 0,4 b_{\text{eff}} \quad b_{e2} = 0,6 b_{\text{eff}}$    |                                 |
| $\psi = \sigma_2/\sigma_1$                 | 1   | $1 > \psi > 0$                                                                                                                                         | 0                               |
| Buckling factor $k_\sigma$                 | 4,0 | $8,2 / (1,05 + \psi)$                                                                                                                                  | 7,81                            |
|                                            |     | $7,81 - 6,29\psi + 9,78\psi^2$                                                                                                                         | 23,9                            |
|                                            |     | $5,98 (1 - \psi)^2$                                                                                                                                    | 5,98 (1 - $\psi$ ) <sup>2</sup> |

**Table 4.2: Outstand compression elements**

| Stress distribution (compression positive) |      | Effective <sup>p</sup> width $b_{\text{eff}}$                              |                       |
|--------------------------------------------|------|----------------------------------------------------------------------------|-----------------------|
|                                            |      | $\underline{1 > \psi \geq 0}:$<br>$b_{\text{eff}} = \rho c$                |                       |
|                                            |      | $\underline{\psi < 0}:$<br>$b_{\text{eff}} = \rho b_c = \rho c / (1-\psi)$ |                       |
| $\psi = \sigma_2/\sigma_1$                 | 1    | 0                                                                          | -1                    |
| Buckling factor $k_\sigma$                 | 0,43 | 0,57                                                                       | 0,85                  |
|                                            |      | $0,57 - 0,21\psi + 0,07\psi^2$                                             | $1 \geq \psi \geq -3$ |
|                                            |      | $\underline{1 > \psi \geq 0}:$<br>$b_{\text{eff}} = \rho c$                |                       |
|                                            |      | $\underline{\psi < 0}:$<br>$b_{\text{eff}} = \rho b_c = \rho c / (1-\psi)$ |                       |
| $\psi = \sigma_2/\sigma_1$                 | 1    | $1 > \psi > 0$                                                             | 0                     |
| Buckling factor $k_\sigma$                 | 0,43 | $0,578 / (\psi + 0,34)$                                                    | 1,70                  |
|                                            |      | $1,7 - 5\psi + 17,1\psi^2$                                                 | 23,8                  |

- For plates in shear:

$$\tau_{cr} = K \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$$

$$K = 5.34 + \frac{4}{(a/b)^2} \quad \text{if } a > b$$

$$K = 5.34 + \frac{4}{(b/a)^2} \quad \text{if } b > a$$

## Effective widths

(EN 1993-1-5; Clause 4.4)

$$A_{c,eff} = \rho A_c \quad (4.1)$$

where  $\rho$  is the reduction factor for plate buckling.

(2) The reduction factor  $\rho$  may be taken as follows:

- internal compression elements:

$$\rho = 1,0 \quad \text{for } \bar{\lambda}_p \leq 0,5 + \sqrt{0,085 - 0,055 \psi} \quad \text{AC1}$$

$$\rho = \frac{\bar{\lambda}_p - 0,055(3 + \psi)}{\bar{\lambda}_p^2} \leq 1,0 \quad \text{for } \bar{\lambda}_p > 0,5 + \sqrt{0,085 - 0,055 \psi}, \text{AC1 text deleted AC1} \quad (4.2)$$

- outstand compression elements:

$$\rho = 1,0 \quad \text{for } \bar{\lambda}_p \leq 0,748$$

$$\rho = \frac{\bar{\lambda}_p - 0,188}{\bar{\lambda}_p^2} \leq 1,0 \quad \text{for } \bar{\lambda}_p > 0,748 \quad (4.3)$$

where  $\bar{\lambda}_p = \sqrt{\frac{f_y}{\sigma_{cr}}} = \frac{\bar{b}/t}{28,4 \varepsilon \sqrt{k_\sigma}}$

## Shear buckling

Shear buckling needs to be checked if:  $\frac{h_w}{t_w} \geq 72\varepsilon$

where  $h_w$  is the web height,  $t_w$  is the web thickness and  $\varepsilon = \sqrt{235/f_y}$  (with  $f_y$  in MPa).

$$V_{b,Rd} = \chi_w \frac{(f_y/\sqrt{3})h_w t_w}{\gamma_{M1}}$$

$$\lambda_w = 0.76 \sqrt{\frac{f_y}{\tau_{cr}}}$$

**Table 5.1: Contribution from the web  $\chi_w$  to shear buckling resistance**

|                                         | Rigid end post                 | Non-rigid end post     |
|-----------------------------------------|--------------------------------|------------------------|
| $\bar{\lambda}_w < 0,83/\eta$           | $\eta$                         | $\eta$                 |
| $0,83/\eta \leq \bar{\lambda}_w < 1,08$ | $0,83/\bar{\lambda}_w$         | $0,83/\bar{\lambda}_w$ |
| $\bar{\lambda}_w \geq 1,08$             | $1,37/(0,7 + \bar{\lambda}_w)$ | $0,83/\bar{\lambda}_w$ |

## Flange induced buckling

(EN 1993-1-5; Clause 8)

(1) To prevent the compression flange buckling in the plane of the web, the following criterion should be met:

$$\frac{h_w}{t_w} \leq k \frac{E}{f_{yf}} \sqrt{\frac{A_w}{A_{fc}}} \quad (8.1)$$

where  $A_w$  is the cross section area of the web;

$A_{fc}$  is the effective cross section area of the compression flange;

$h_w$  is the depth of the web;

$t_w$  is the thickness of the web.

The value of the factor  $k$  should be taken as follows:

- plastic rotation utilized  $k = 0,3$
- plastic moment resistance utilized  $k = 0,4$
- elastic moment resistance utilized  $k = 0,55$

## Stiffener buckling

(EN 1993-1-5; Clause 4.5.3)

$$\alpha_c = \alpha + \frac{0.09}{i/e}$$

where:

$\alpha = 0.34$  for closed section stiffeners

$\alpha = 0.49$  for open section stiffeners

$i$  = the radius of gyration of the effective column

$$e = \max (e_1, e_2)$$

$e_1$  = the distance between the centroid of the stiffener and the centroid of the effective column

$e_2$  = the distance between the centre line of the stiffened plate and the centroid of the effective column

## Moment-shear-axial force interaction

(EN 1993-1-3; Clause 8)

(1) For cross-sections subject to the combined action of an axial force  $N_{Ed}$ , a bending moment  $M_{Ed}$  and a shear force  $V_{Ed}$  no reduction due to shear force need not be done provided that  $V_{Ed} \leq 0,5 V_{w,Rd}$ . If the shear force is larger than half of the shear force resistance then following equations should be satisfied:

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) \left(\frac{2V_{Ed}}{V_{w,Rd}} - 1\right)^2 \leq 1,0 \quad \dots(6.27)$$

where:

$N_{Rd}$  is the design resistance of a cross-section for uniform tension or compression given in 6.1.2 or 6.1.3;

$M_{y,Rd}$  is the design moment resistance of the cross-section given in 6.1.4;

$V_{w,Rd}$  is the design shear resistance of the web given in 6.1.5(1);

$M_{f,Rd}$  is the moment of resistance of a cross-section consisting of the effective area of flanges only, see EN 1993-1-5;

$M_{pl,Rd}$  is the plastic moment of resistance of the cross-section, see EN 1993-1-5.

## DS5: Connections

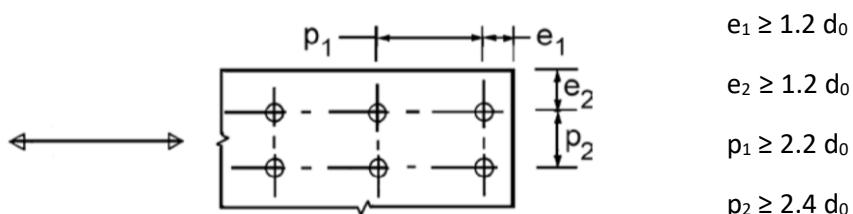
| Bolt size | Tensile Area    |
|-----------|-----------------|
| -         | mm <sup>2</sup> |
| M10       | 58.0            |
| M12       | 84.3            |
| M14       | 115             |
| M16       | 157             |
| M18       | 192             |
| M20       | 245             |
| M22       | 303             |
| M24       | 353             |
| M27       | 459             |
| M30       | 561             |

Shear capacity of a bolt:

$$F_{V,Rd} = 0.6A_f f_{ub}/\gamma_{M2}$$

Tensile capacity of a bolt:

$$F_{t,Rd} = 0.9A_s f_{ub}/\gamma_{M2}$$


Bolt in tension and shear:

$$\frac{F_{V,Ed}}{F_{V,Rd}} + \frac{F_{t,Ed}}{1.4F_{t,Rd}} \leq 1.0$$

**Table 18 — Values of the nominal minimum preloading force  $F_{p,C}$  in [kN]**

| Property class | Bolt diameter in mm |    |     |     |     |     |     |     |     |     |
|----------------|---------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|
|                | 12                  | 14 | 16  | 18  | 20  | 22  | 24  | 27  | 30  | 36  |
| 8.8            | 47                  | 65 | 88  | 108 | 137 | 170 | 198 | 257 | 314 | 458 |
| 10.9           | 59                  | 81 | 110 | 134 | 172 | 212 | 247 | 321 | 393 | 572 |

Minimum end and edge distances, and bolt spacings:



Bolt tear-out:

$$F_{1,Rd} = 2at \frac{f_y}{\sqrt{3}}/\gamma_{M0}$$

Block tear-out in tension:

$$F_{eff,1,Rd} = \frac{f_u A_{nt}}{\gamma_{M2}} + \frac{f_y}{\sqrt{3}} \frac{A_{nV}}{\gamma_{M0}}$$

Block tear-out in shear:

- $t$  = ply thickness
- $A_{nt}$  = area in tension
- $A_{nV}$  = area in shear

$$F_{eff,2,Rd} = 0.5 \frac{f_u A_{nt}}{\gamma_{M2}} + \frac{f_y}{\sqrt{3}} \frac{A_{nV}}{\gamma_{M0}}$$

Bolt bearing:

$$F_{b,Rd} = \frac{k_1 \alpha_b f_u d t}{\gamma_{M2}}$$

where  $\alpha_b$  is the smallest of  $\alpha_d$ ;  $\frac{f_{ub}}{f_u}$  or 1,0;

in the direction of load transfer:

- for end bolts:  $\alpha_d = \frac{e_1}{3d_0}$ ; for inner bolts:  $\alpha_d = \frac{p_1}{3d_0} - \frac{1}{4}$

perpendicular to the direction of load transfer:

**AC2** - for edge bolts:  $k_1$  is the smallest of  $2,8 \frac{e_2}{d_0} - 1,7, 1,4 \frac{p_2}{d_0} - 1,7$  and  $2,5$  **AC2**

- for inner bolts:  $k_1$  is the smallest of  $1,4 \frac{p_2}{d_0} - 1,7$  or  $2,5$

Punching shear:

$$B_{p,Rd} = 0.6\pi d_m t_p f_u / \gamma_{M2}$$

$t_p$  = thickness of the plate under the head/nut

$d_m$  = average diameter of the head/nut

Bolt slip load:

$$F_{s,Rd} = \frac{n\mu F_{p,C}}{\gamma_{M3,ser}}$$

$n$  = number of friction planes

$F_{p,C}$  = bolt pre-load

$\mu$  = friction coefficient (see below)

$\gamma_{M3,ser} = 1.10$

Classifications that may be assumed for friction surfaces

| Surface treatment                                                                                                                                                                                                                                           | Class | Slip factor ( $\mu$ ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|
| Surfaces blasted with shot or grit with loose rust removed, not pitted                                                                                                                                                                                      | A     | 0.50                  |
| Surfaces hot-dip galvanized and flash (sweep) blasted and with alkali-zinc silicate paint with a nominal thickness of 60 $\mu\text{m}$                                                                                                                      | B     | 0.40                  |
| Surfaces blasted with shot or grit;<br>a) coated with alkali-zinc silicate paint with a nominal thickness of 60 $\mu\text{m}$<br>b) thermally sprayed with aluminium or zinc or a combination of both to a nominal thickness not exceeding 80 $\mu\text{m}$ | B     | 0.40                  |
| Surfaces hot-dip galvanized and flash (sweep) blasted                                                                                                                                                                                                       | C     | 0.35                  |
| Surfaces cleaned by wire brush or flame cleaning, with loose rust removed                                                                                                                                                                                   | C     | 0.30                  |
| Surfaces as rolled                                                                                                                                                                                                                                          | D     | 0.20                  |

Reduction factor for long bolted connections ( $L_j > 15d$ , where  $d$  is the bolt diameter):

$$\beta_{L,f} = 1 - \frac{L_j - 15d}{200d} \quad 0.75 \leq \beta_{L,f} \leq 1.0$$

Reduction factor for shear lag in eccentrically connected angles (EN 1993-1-8 Clause 3.10.3):

| Pitch           | $p_1$     | $\leq 2,5 d_o$ | $\geq 5,0 d_o$ |
|-----------------|-----------|----------------|----------------|
| 2 bolts         | $\beta_2$ | 0,4            | 0,7            |
| 3 bolts or more | $\beta_3$ | 0,5            | 0,7            |

Bolt group subject to moment:

$$F_i = k r_i \quad k = \frac{M}{\sum r_i^2}$$

$M$  = applied moment

$r_i$  = distance from the bolt to the centre of rotation of the bolt group

$F_i$  = bolt shear force

Design of welds:

$$\sqrt{\sigma_x^2 + 3(\tau_y^2 + \tau_z^2)} \leq \frac{f_u}{\beta_w \gamma_{M2}} \quad \text{and} \quad \sigma_x \leq 0.9 \frac{f_u}{\gamma_{M2}}$$

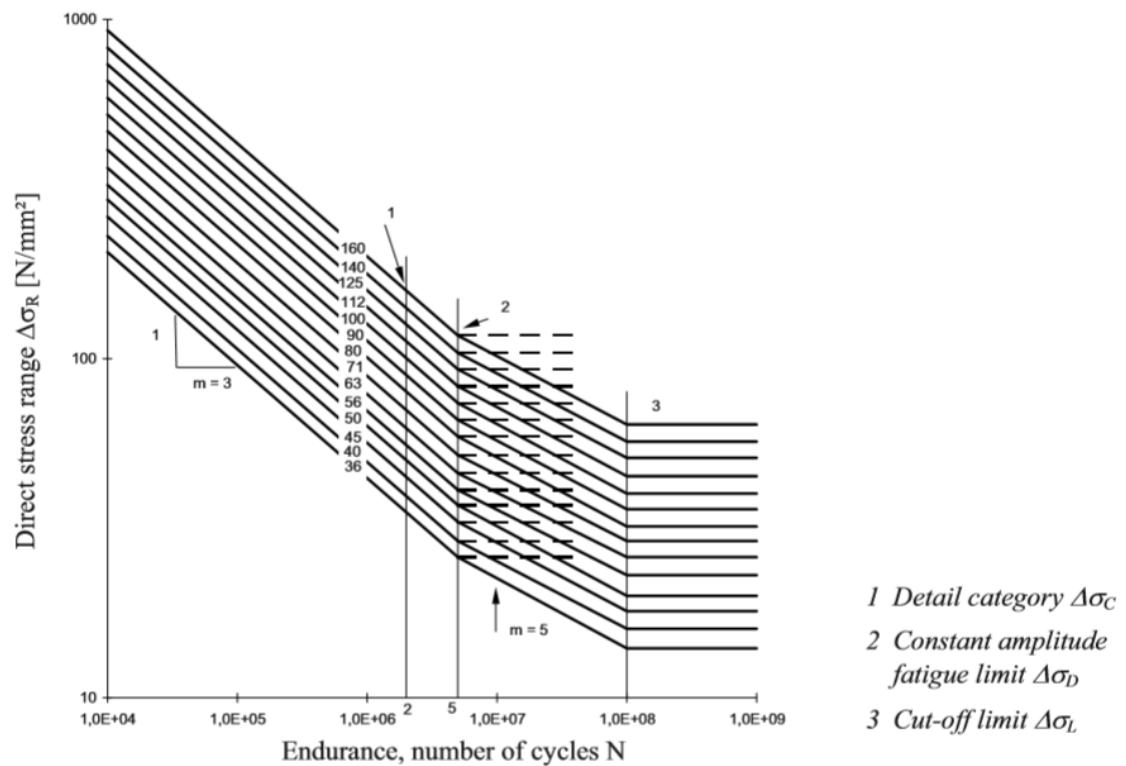
$f_u$  = ultimate tensile strength of the weaker connected part

$\beta_w$  = 0.9 for S355; 0.85 for S275

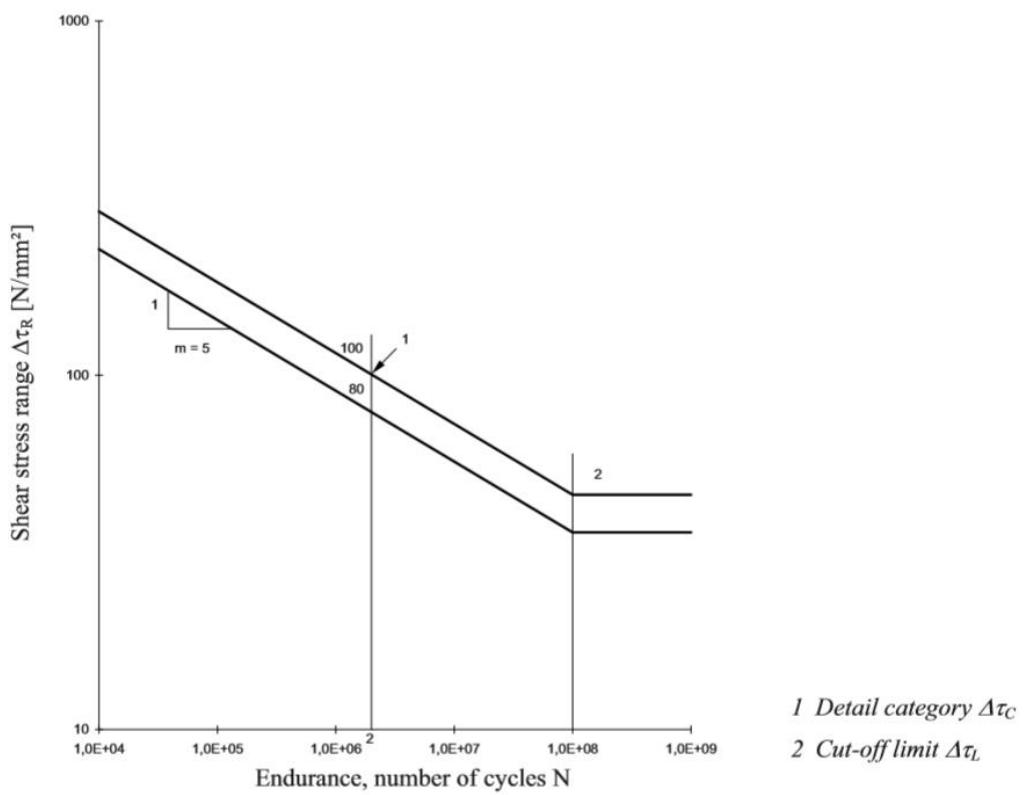
Reduction factor for long welds:

- if  $l_w \geq 150a$  :  $\beta_{Lw,1} = 1.2 - \frac{0.2l_w}{150a}$   $\beta_{Lw,1} \leq 1.0$
- if  $l_w \geq 1.7 \text{ m}$  in stiffeners of plate girders:  $\beta_{Lw,2} = 1.1 - \frac{l_w}{17}$  ( $l_w$  in m)

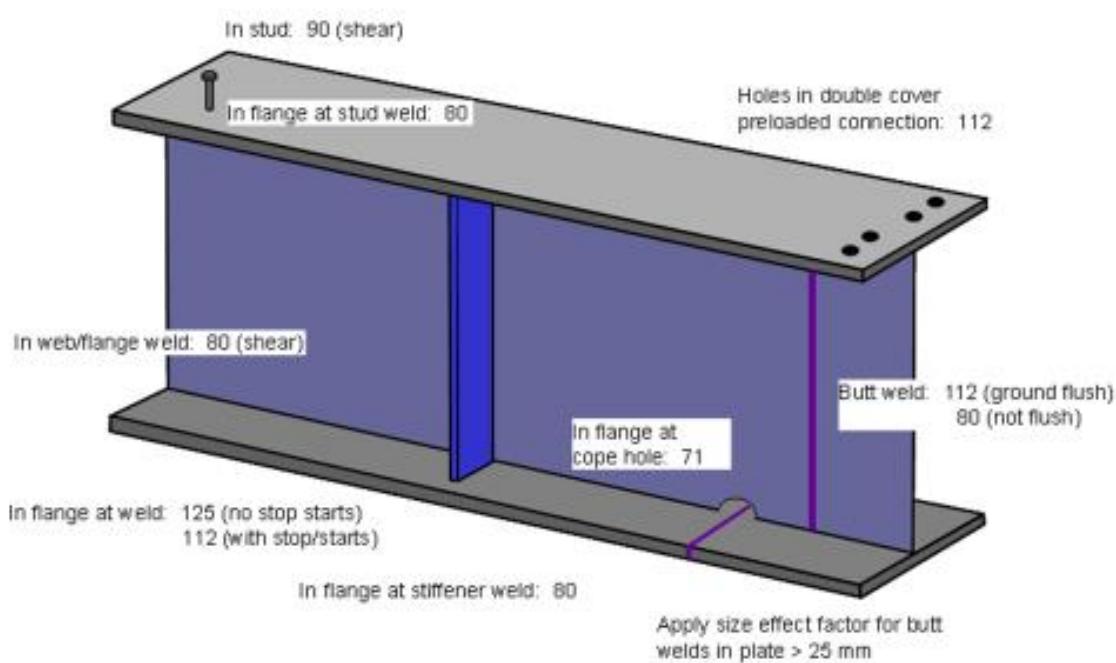
$$0.6 \leq \beta_{Lw,2} \leq 1.0$$


where  $a$  is the throat thickness of the weld.

S-N curves:  $N_r(\Delta\sigma_r)^m = K$


$N_r$  = number of cycles causing failure

$\Delta\sigma_r$  = amplitude of the stress cycle


$K, m$  = constants



- 1 Detail category  $\Delta\sigma_C$
- 2 Constant amplitude fatigue limit  $\Delta\sigma_D$
- 3 Cut-off limit  $\Delta\sigma_L$



- 1 Detail category  $\Delta\tau_C$
- 2 Cut-off limit  $\Delta\tau_L$



Typical fatigue details in plate girders.

Palmgren-Miner rule:

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots + \frac{n_i}{N_i} + \dots \leq 1$$

$n_i$  = number of applied cycles with amplitude  $\Delta\sigma_i$

$N_i$  = number of cycles with amplitude  $\Delta\sigma_i$  causing failure

## DS6: Composite beams

Headed shear studs:

- standard sizes are 13 mm, 16 mm, 19 mm, 22 mm, 25 mm.
- shear capacity is the lesser of:

$$P_{Rd} = \frac{0.8f_u(\pi d^2/4)}{\gamma_v}$$

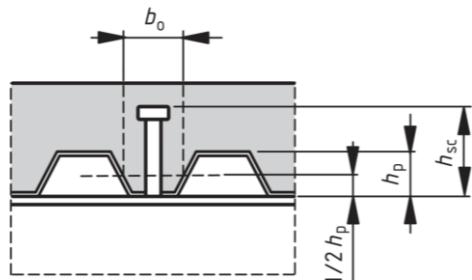
$$P_{Rd} = \frac{0.29d^2 (f_{ck}E_{cm})^{0.5}}{\gamma_v}$$

where:

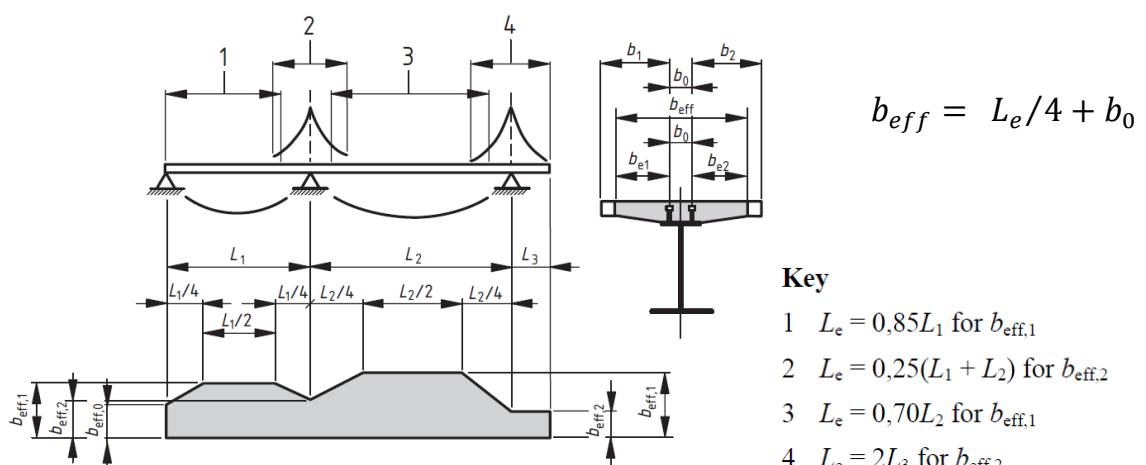
$f_u$  = ultimate tensile strength of the steel

$d$  = diameter of the stud

$f_{ck}$  = concrete compressive strength


$E_{cm}$  = elastic modulus of the concrete

$\gamma_v$  = 1.25


- Reduction factor for studs on steel decking:

$$k_t = \frac{0.7}{\sqrt{n_r}} \frac{b_0}{h_p} \left( \frac{h_{sc}}{h_p} - 1 \right)$$

$n_r$  = number of studs per rib



Effective width of the concrete slab:



$$\text{Modular ratio: } n = 2n_0 \quad n_0 = E_a/E_{cm}$$

where  $E_a$  is the elastic modulus of steel and  $E_{cm}$  is the elastic modulus of the concrete:

| Strength classes for concrete |     |     |     |     |     |      |     |     |      | Analytical relation / Explanation |     |      |     |                                                                                                                   |                                                                                                                |
|-------------------------------|-----|-----|-----|-----|-----|------|-----|-----|------|-----------------------------------|-----|------|-----|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| $f_{ck}$ (MPa)                | 12  | 16  | 20  | 25  | 30  | 35   | 40  | 45  | 50   | 55                                | 60  | 70   | 80  | 90                                                                                                                |                                                                                                                |
| $f_{ck, \text{cube}}$ (MPa)   | 15  | 20  | 25  | 30  | 37  | 45   | 50  | 55  | 60   | 67                                | 75  | 85   | 95  | 105                                                                                                               |                                                                                                                |
| $f_{cm}$ (MPa)                | 20  | 24  | 28  | 33  | 38  | 43   | 48  | 53  | 58   | 63                                | 68  | 78   | 88  | 98                                                                                                                |                                                                                                                |
| $f_{cm}$ (MPa)                | 1,6 | 1,9 | 2,2 | 2,6 | 2,9 | 3,2  | 3,5 | 3,8 | 4,1  | 4,2                               | 4,4 | 4,6  | 4,8 | 5,0                                                                                                               |                                                                                                                |
| $f_{ck, 0,05}$ (MPa)          | 1,1 | 1,3 | 1,5 | 1,8 | 2,0 | 2,2  | 2,5 | 2,7 | 2,9  | 3,0                               | 3,1 | 3,2  | 3,4 | 3,5                                                                                                               |                                                                                                                |
| $f_{ck, 0,95}$ (MPa)          | 2,0 | 2,5 | 2,9 | 3,3 | 3,8 | 4,2  | 4,6 | 4,9 | 5,3  | 5,5                               | 5,7 | 6,0  | 6,3 | 6,6                                                                                                               |                                                                                                                |
| $E_{cm}$ (GPa)                | 27  | 29  | 30  | 31  | 33  | 34   | 35  | 36  | 37   | 38                                | 39  | 41   | 42  | 44                                                                                                                |                                                                                                                |
| $\varepsilon_{c1}$ (%)        | 1,8 | 1,9 | 2,0 | 2,1 | 2,2 | 2,25 | 2,3 | 2,4 | 2,45 | 2,5                               | 2,6 | 2,7  | 2,8 | see Figure 3.2<br>$\varepsilon_{c1}(\%) = 0,7 f_{cm}^{0,31} < 2,8$                                                |                                                                                                                |
| $\varepsilon_{c1,1}$ (%)      |     |     |     |     |     | 3,5  |     |     |      | 3,2                               | 3,0 | 2,8  | 2,8 | see Figure 3.2<br>for $f_{ck} \geq 50 \text{ MPa}$<br>$\varepsilon_{c1,1}(\%) = 2,8 + 2/(98 \cdot f_{cm})/100]^4$ |                                                                                                                |
| $\varepsilon_{c2}$ (%)        |     |     |     |     |     | 2,0  |     |     |      | 2,2                               | 2,3 | 2,4  | 2,5 | 2,6                                                                                                               | see Figure 3.3<br>for $f_{ck} \geq 50 \text{ MPa}$<br>$\varepsilon_{c2}(\%) = 2,0 + 0,085(f_{ck} - 50)^{0,53}$ |
| $\varepsilon_{c1,2}$ (%)      |     |     |     |     |     | 3,5  |     |     |      | 3,1                               | 2,9 | 2,7  | 2,6 | 2,6                                                                                                               | see Figure 3.3<br>for $f_{ck} \geq 50 \text{ MPa}$<br>$\varepsilon_{c1,2}(\%) = 2,6 - 35((90 - f_{ck})/100)^4$ |
| $n$                           |     |     |     |     |     | 2,0  |     |     |      | 1,75                              | 1,6 | 1,45 | 1,4 | 1,4                                                                                                               | for $f_{ck} \geq 50 \text{ MPa}$<br>$n = 1,4 + 23,4((90 - f_{ck})/100)^4$                                      |
| $\varepsilon_{c3}$ (%)        |     |     |     |     |     | 1,75 |     |     |      | 1,8                               | 1,9 | 2,0  | 2,2 | 2,3                                                                                                               | see Figure 3.4<br>for $f_{ck} \geq 50 \text{ MPa}$<br>$\varepsilon_{c3}(\%) = 1,75 + 0,55((f_{ck} - 50)/40)$   |
| $\varepsilon_{c1,3}$ (%)      |     |     |     |     |     | 3,5  |     |     |      | 3,1                               | 2,9 | 2,7  | 2,6 | 2,6                                                                                                               | see Figure 3.4<br>for $f_{ck} \geq 50 \text{ MPa}$<br>$\varepsilon_{c1,3}(\%) = 2,6 - 35((90 - f_{ck})/100)^4$ |