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1 (a) Show from first principles that equilibrium around a circular cavity in the
presence of an inwards body force due to self weight is given by:

𝑟
𝑑𝜎𝑟

𝑑𝑟
+ (𝜎𝑟 − 𝜎𝜃) + 𝛾𝑟 = 0

where 𝜎𝑟 is the radial stress, 𝜎𝜃 is the circumferential stress, 𝛾 is the unit weight of the
soil and 𝑟 is the radius from the centre of the cavity. [30%]

(b) A tunnel of radius 𝑟 has its longitudinal axis at a depth 𝑧 below the surface of a clay
soil with undrained shear strength 𝑐𝑢 and unit weight 𝛾. Derive from first principles an
expression for the radial stress that the tunnel lining must exert on the soil to maintain
stability of the tunnel. [30%]

(c) If a drained analysis were instead to be carried out for the same problem in which the
soil is treated as a frictional material with a passive earth pressure coefficient 𝐾𝑝 , derive
from first principles an expression for the radial stress that the tunnel lining must exert on
the soil to maintain stability of the tunnel. [40%]
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2 An offshore wind turbine is to be supported on a single steel monopile foundation
with an outer diameter of 5 m and a wall thickness of 50 mm. The site is comprised
of a normally consolidated clay with an undrained strength profile given by 𝑐𝑢 = 1.5𝑧
(kPa) where 𝑧 (m) is the depth below the mudline. The buoyant unit weight of the clay is
6 kN m−3 and the coefficient of consolidation 𝑐ℎ is 15 m2 year−1. The loads exerted on
the pile by the structure are self-weight of 8 MN and a horizontal load of 2 MN applied
20 m above the mudline.

(a) By considering only vertical loading on the pile, estimate the required pile length
using the API design method. Consider both plugged and unplugged behaviour. [40%]

(b) Ignoring the possibility of structural failure, evaluate whether the pile length needs
to be increased to resist the horizontal load. [20%]

(c) Assuming the steel to have a yield strength of 400 MPa, is the pile section sufficient
to carry the applied horizontal load? [20%]

(d) Assuming consolidation around the pile to be 90% complete after an equivalent
dimensionless time 𝑇𝑒𝑞 = 𝑐ℎ𝑡/𝐷2

𝑒𝑞 = 10, estimate the set-up period that should be
allowed after driving before attaching the structure to the foundation. [20%]
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3 (a) Why are pile foundations often subjected to load testing whereas shallow
foundations typically are not? [20%]

(b) Describe four methods of pile load testing. What are the advantages and
disadvantages of each method? [20%]

(c) Describe the stress changes taking place for an element of sand initially on the pile
centreline during driven pile installation. [25%]

(d) Describe the stress changes taking place for an element of clay initially on the pile
centreline during driven pile installation and the subsequent period. How does this lead to
the bilinear form of the API unit shaft resistance equation for clays given in the databook?

[35%]

4 (a) What factors are important in determining whether a tunnel can be constructed
with an open face? [15%]

(b) A 5 m diameter tunnel is being constructed in clay with an undrained strength of
40 kPa and a unit weight of 16 kN m−3 at a depth of 15 m to the tunnel crown. How far
ahead of the lining can excavation progress without collapse? [20%]

(c) How does forepoling assist in open face tunnelling in marginally stable conditions? [15%]

(d) Describe the operation of an earth pressure balance tunnel boring machine. [20%]

(e) Tunnelling almost inevitably causes ground movements which may impact on
overlying structures. Qualitatively describe how the location and stiffness of the structure
will influence the severity of the damage caused. [30%]

END OF PAPER

Page 4 of 4



1 

 
 
 
 
 
 
 
 
 
 
 
 

Cambridge University Engineering Department 
 

Supplementary Databook 
 
 

Module 4D5: Foundation Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SKH. January 2024 



2 

Section 1: Empirical correlations for geotechnical data 
 
 
1.1 Undrained shear strength of clays (su) 
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u   where n  =  ′v,c / ′v is overconsolidation ratio;   ≈ 0.8 
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u N

q
s


  from q at tip load cell, where Ncone ≈ 14 ± 2 ; NT-bar ≈ 12 ± 2 

 

60u N5.4s   kPa  from SPT blow-count N60 in Standard Penetration Test  

 
 
 
1.2 Drained shear strength of sands (friction and dilatancy) 
 
definition of relative dilatancy  IR  =  ID IC – 1 
 
definition of relative density   ID  =  (emax – e)(emax – emin) 
 

SPT blow-count correlation  ID  [N60 / (20 + 0.2 ′v kPa)]0.5 

 
definition of relative crushability IC  =  ln (c/ p) 
 

aggregate crushing stress  c ≈   shelly carbonate sand 5 000 kPa  
 

         quartz sand 20 000 kPa 
 
         quartz silt     80 000 kPa 

 
CPT correlation (qcone , ′v  in kPa)   29.1ln5.0qln27.0I vconeD   ± 0.15 (higher, c lower) 
  
 
 
peak friction correlation  (max  –  crit) ≈   0.8  max ≈   5° x IR   in plane strain 
 
     (max  –  crit) ≈  3° x IR  in axisymmetric strain 
 
peak dilatancy rate   (–v / 1)max ≈  0.3 x IR  in all conditions 
 
critical state friction angle  crit  ≈ 32º (uniform, rounded) → 40º (well-graded, angular) 
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1.3 Stiffness of clays 
 

initial linear elastic shear stiffness   5.0
4.20 p
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  with G0, p′  in kPa 

 
     B  ≈  20 000 
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hyperbolic curvature parameter a ≈ 0.68 for n < 1.5, a ≈ 0.77 for n > 1.5 
 
reference shear strain  ref ≈ A wL10-3  e.g. writing liquid limit 40% as wL = 0.4 
 

A ≈ 1.35 for n < 1.5; A ≈ 1.02 for n >1.5 
 

mobilised shear strength  
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  for smob < su 

 
u ≈  0.01 to 0.04  increasing with plasticity index Ip 

 
 
1.4 Stiffness of sands 
 

initial linear elastic shear stiffness      5.0
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B  ≈  57 600 
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hyperbolic curvature parameter  075.0
cUa    e.g. a = 0.9 at uniformity coefficient Uc = 4 

 
reference shear strain   4

D
63.0

cref 10Ie810pU    


elastic limiting strain   e  =  0.012 ref  +  2.10-6 
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Section 2: Plasticity theory 
 
 

This section is common with the Soil Mechanics Databook supporting modules 3D1 and 3D2. 
Undrained shear strength (‘cohesion’ in a Tresca material) is denoted by su rather than cu. 
 
2.1  Plasticity: Tresca material, max = su 

 
Limiting stresses 
 
 Tresca  31    =  qu= 2su 

 von Mises       2
u

2
u

2
3

2
2

2
1 s2q

3

2
ppp   

 
qu= undrained triaxial compression strength; su= undrained plane shear strength. 
 
Dissipation per unit volume in plane strain deformation following either Tresca or von Mises, 
 
   D  = su 
 
For a relative displacement  x  across a slip surface of area  A  mobilising shear strength  su , 
this becomes 
   D  =  Asux 
 
 
2.2  Stress conditions across a discontinuity: 
 
 
 

Rotation of major principal stress  

 

 
sB  –  sA  =  s  =  2su sin  
1B  –  1A  =  2su sin  

 
In limit with   0 

 
ds  =  2su d 
 

          Useful example: 
 
  =  30º 
 
1B – 1A= su 
 
D / su  =  0.87 
 
 

1A =  major principal stress in zone A 
 

1B =  major principal stress in zone B 
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2.3  Plasticity: Coulomb material   (/’)max  =  tan  
 
Limiting stresses 
 

sin  = (’1f - ’3f)/( ’1f + ’3f) = (1f - 3f)/( 1f + 3f - 2u) 
 
where '1f  and ’3f are the major and minor principal effective stresses at failure, 1f  and 3f 
are the major and minor principal total stresses at failure, and u is the pore pressure. 
 
2.4  Stress conditions across a discontinuity 
 
 
 Rotation of major principal 

stress 
 
  =  /2 –    
 
1A  =  major principal stress 
            in zone A 
 
1B  =  major principal stress in 

zone B 
 
tan  = D / ’D 
 
 

 
 

 
sin  = sin  / sin ’ 

 
s’B/s’A = sin( + ) / sin( – ) 
 
In limit, d    0 and     ’  
 
ds’= 2s’. d tan ’ 
 
Integration gives s’B/s’A = exp (2 tan ’) 
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Section 3: Bearing capacity of shallow foundations 
 
3.1 Tresca soil, with undrained strength su 
 
3.1.1 Vertical loading 
 
The vertical bearing capacity, qf, of a shallow foundation for undrained loading (Tresca soil) 
is: 

hsNdsq
A

V
ucccf

ult   

 
Vult and A are the ultimate vertical load and the foundation area, respectively. h is the 
embedment of the foundation base and  (or ’) is the appropriate density of the overburden.  
 
The exact bearing capacity factor Nc for a plane strain surface foundation (zero embedment) 
on uniform soil is: 
 

Nc = 2 +    (Prandtl, 1921) 
 
Shape correction factor: 
For a rectangular footing of length L and breadth B (Eurocode 7): 
 

sc = 1 + 0.2 B / L 
 
The exact solution for a rough circular foundation (B/L=1) is qf= 6.05su, hence sc= 1.18 0.2. 
 
Embedment correction factor: 
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is: 
 

dc= 1 + 0.33 tan-1 (h/D) (or h/B for a strip or rectangular foundation) 
 
3.1.2 Combined V-H loading 
 
A curve fit to Green’s lower bound plasticity solution for V-H loading is: 

If V/Vult > 0.5:  
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If V/Vult  < 0.5:   H = Hult = Bsu     

 
3.1.3 Combined V-H-M loading 
 
With lift-off:  combined Green-Meyerhof    (Vult = bearing capacity of effective area B-e)  
 

If V/Vult  < 0.5:  

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Without lift-off: 01
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 (Taiebat & Carter 2000) 
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3.2  Frictional (Coulomb) soil, with friction angle  
 
3.2.1 Vertical loading 
 
The vertical bearing capacity, qf, of a shallow foundation under drained loading (Coulomb soil) 
is: 
 

2

B'
Ns'Ns   q

A

V
γ0vqqf

ult 
    

 
The bearing capacity factors Nq and N account for the capacity arising from surcharge and 
self-weight of the foundation soil respectively. ’v0 is the in situ effective stress acting at the 
level of the foundation base. 
 
For a strip footing on weightless soil, the exact solution for Nq is: 
 

Nq = tan2(/4 + /2) e( tan )  (Prandtl 1921) 
 
An empirical relationship to estimate N from Nq is (Eurocode 7): 
 

N = 2 (Nq – 1) tan  
 
Curve fits to exact solutions for  
N= f() are (Davis & Booker 1971): 
 
Rough base: 

 
6.9e1054.0N   

Smooth base:  
 

3.9e0663.0N  

 
Shape correction factors: 
 
For a rectangular footing of length L 
and breadth B (Eurocode 7): 
 

sq = 1 + (B sin ) / L 
s = 1 – 0.3 B / L 

 
For circular footings assume L = B. 
 
3.2.2 Combined V-H loading 
 
The Green/Sokolovski lower bound solution gives a V-H failure surface. 
 
3.2.3 Combined V-H-M loading   
(with lift-off- drained conditions- see failure surface shown above) 
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tanC   (Butterfield & Gottardi 1994) 

Typically, th~0.5, tm~0.4 and ~15. th is the friction coefficient, H/V= tan , during sliding.
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Section 4: Settlement of shallow foundations 
 
4.1 Elastic stress distributions below point, strip and circular loads 
 
Point loading (Boussinesq solution) 
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Uniformly-loaded strip 
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Uniformly-loaded circle  
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(on centerline, r=0) 
 
Vertical stress   
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Contours of vertical stress below uniformly-loaded  
circular (left) and strip footings (right) 
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4.2  Elastic stress distribution below rectangular area 
 
The vertical stress, z, below the corner of a uniformly-loaded rectangle (L  B) is: 
 

z= Irq 
 
Ir is found from m (=L/z) and n (=B/z) using Fadum’s chart or the expression below  
(L and B are interchangeable), which are from integration of Boussinesq’s solution. 
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Influence factor, Ir, for vertical stress under the corner 
of a uniformly-loaded rectangular area (Fadum’s chart) 
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4.3  Elastic solutions for surface settlement 
 
4.3.1 Isotropic, homogeneous, elastic half-space (semi-infinite) 
 
Point load (Boussinesq solution) 

Settlement, w, at distance s:  
s

P

G

)1(

2

1
)s(w




  

Circular area (radius a), uniform soil 

Uniform load:  central settlement:  qa
G

)1(
w o


  

   edge settlement: qa
G

)1(2
w e




  

Rigid punch: (qavg= V/a2)   aq
G

)1(

4
w avgr


  

Circular area, heterogeneous soil 
 
For G0= 0, = 0.5:   
 

w= q/2m under loaded area of any shape 
w= 0  outside loaded area 

 
For G0> 0, central settlement: 

 circ
0

o I
G2

qa
w    

 For = 0.5, 
)maG(2

qa
w

0
o 
  

  
Rectangular area, uniform soil 
 
Uniform load, corner settlement: 
 

 rectc I
2

qB

G

)1(
w


   

 
Where Irect depends on the aspect ratio, L/B: 
 

L/B Irect L/B Irect L/B Irect L/B Irect 
1 0.561 1.6 0.698 2.4 0.822 5 1.052 

1.1 0.588 1.7 0.716 2.5 0.835 6 1.110 
1.2 0.613 1.8 0.734 3 0.892 7 1.159 
1.3 0.636 1.9 0.750 3.5 0.940 8 1.201 
1.4 0.658 2 0.766 4 0.982 9 1.239 
1.5 0.679 2.2 0.795 4.5 1.019 10 1.272 

 

Rigid rectangle: rgd
avg

r I
2

BLq

G

)1(
w


 where Irgd varies from 0.90.7 for L/B = 1-10. 

Note: 
)1(2

E
G


  where = Poisson’s ratio, E= Young’s modulus. 
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4.3.2 Isotropic, homogeneous, elastic finite space  
 
Elastic layer of finite thickness  
 
The mean settlement of a uniformly loaded foundation embedded in an elastic layer 
of finite thickness can be found using the charts below, for 0.5.  
 

E

qB
w 10avg     )1(G2E   

 
The influence factor 1 accounts for the finite layer thickness. The influence factor 0 
accounts for the embedded depth. 
 
 

 
 

Average immediate settlement of a uniformly loaded finite thickness layer 
 

 
Christian & Carrier (1978) Janbu, Bjerrum and Kjaernsli’s chart reinterpreted. Canadian Geotechnical Journal (15) 123-128. 
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4.4  Mobilizable Strength Design (MSD) solutions  
 
Rigid circular foundation on incompressible half-space 
 
(Osman & Bolton, 2005) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vertical bearing stress q 
 
Average shear strain within deformation mechanism:       mob = Mc w/D = 1.35 w/D 
 
Average shear stress mobilized within mechanism:          mob = q / Nc  = q /5.9 
 
Representative depth to identify shear stress-strain behaviour:         zrep = 0.3D 
 
If the representative soil test data fits:                mob = f(mob) 
 
Assume that the foundation load test data would fit:          (q/5.9) = f(1.35 w/D) 
 
NB: this will underestimate w/D as q → 5.9 su, due to local strain concentrations 
 
 
Horizontal or Moment loading  
 
See Osman et al. (2007)  Geotechnique 57 (9) 729-737

Passive 

D  

D/√2 
 Fan 

Active 

Fan 

Passive 
w z,v 

r,u 

quadratic displacement field 
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Section 5: Bearing capacity of deep foundations 
 
 
5.1 Axial capacity: API (2000) design method for driven piles 
 
5.1.1 Sand 
 
Unit shaft resistance:  lim,s0vhfsf tan'Ktan'       

 
Closed-ended piles:  K = 1 
Open-ended piles:  K = 0.8 
 
Unit base resistance:  qb = Nq ’vo  < qb,limit 

 
Soil 

category 
Soil density Soil type Soil-pile 

friction 
angle,  () 

Limiting 
value s,lim 

(kPa) 

Bearing 
capacity 
factor, Nq 

Limiting 
value, 

qb,lim (MPa) 
1 Very loose 

Loose 
Medium 

Sand 
Sand-silt 
Silt 

15 50 8 1.9 

2 Loose 
Medium 
Dense 

Sand 
Sand-silt 
Silt 

20 75 12 2.9 

3 Medium 
Dense 

Sand 
Sand-silt 

25 85 20 4.8 

4 Dense 
Very dense 

Sand 
Sand-silt 

30 100 40 9.6 

5 Dense 
Very dense 

Gravel 
Sand 

35 115 50 12 

API (2000) recommendations for driven pile capacity in sand 
 
5.1.2 Clay 
 
American Petroleum Institute (API) (2000) guidelines for driven piles in clay. 
 

Unit shaft resistance:  


















 







 





25.0

u

vo

5.0

u

vo

u

s

s
  ,

s
Max5.0

s
 

It is assumed that equal shaft resistance acts inside and outside open-ended piles. 

 
Unit base resistance:  qb = Nc su  Nc = 9. 
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5.2 Axial capacity: base resistance in sand using Bolton’s stress dilatancy 
 
 
Unit base  resistance, qb, is expressed as a function of relative density, ID, constant 
volume (critical state) friction angle, cv, and in situ vertical effective stress, ’v. 
 

 
 

Design charts for base resistance in sand 
(Randolph 1985, Fleming et al 1992) 
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5.3  Lateral capacity: linearly increasing lateral resistance with depth 
 
Lateral soil resistance (force per unit length), Pu = nzD 
 
In sand, n = ’Kp2 
In normally consolidated clay with strength gradient k; su = kz; n=9k 
 
 

Hult ultimate horizontal load on pile 

Mp plastic moment capacity of pile 
D pile diameter 
L pile length 
e load level above pile head  

(=M/H for H-M pile head loading) 
’ effective unit weight 
Kp passive earth pressure coefficient,  

Kp= (1+ sin )/(1- sin ) 
 
 
 
 

 
 

 
        Short pile failure mechanism   Long pile failure mechanism 

 
Lateral pile capacity 

(linearly increasing lateral resistance with depth) 
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5.4  Lateral capacity: uniform clay 
 
Lateral soil resistance (force per unit length), Pu, increases from 2suD at surface to 
9suD at 3D depth then remains constant. 
 
 
Hult ultimate horizontal load on pile 
Mp plastic moment capacity of pile 
D pile diameter 
L pile length 
e load level above pile head  

(=M/H for H-M pile head loading) 
su undrained shear strength 

 
             

 
 

 
 

 
        Short pile failure mechanism   Long pile failure mechanism 

 
Lateral pile capacity 

(uniform clay lateral resistance profile) 
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Section 6: Settlement of deep foundations 
 
6.1  Settlement of a rigid pile  

 
Shaft response: 

Equilibrium:  

r

R
s  

Compatibility: 

 
dr

dw
  

Elasticity: 

G



  

Integrate to magical 
radius, rm, for shaft 
stiffness, s/w.    Nomenclature for settlement analysis of single piles 
 
Combined response of base (rigid punch) and shaft: 

w

Q

w

Q

w

V s

base

b

head

      






 avgbasebase

head

LG2

1

GR4

w

V
 

D

L

G

G2

D

D

G

G

1

2

DGw

V

L

avgbase

L

base

Lhead 





   
D

L2

1

2

DGw

V

Lhead










  

These expressions are simplified using dimensionless variables: 

Base enlargement ratio, eta = Rbase/R = Dbase/D Slenderness ratio     L/D  

Stiffness gradient ratio, rho  = Gavg/GL  Base stiffness ratio, xi   = GL/Gbase 

It is often assumed that the dimensionless zone of influence, =ln(rm/R) = 4.  

 

More precise relationships, checked against numerical analysis are: 

 






 

D

L
)5.0)1(5(5.0ln    for =1: 







 

D

L
)1(5ln  

 
6.2  Settlement of a compressible pile 
 

D

L

L

Ltanh

)1(

81
1

D

L

L

Ltanh2

)1(

2

DGw

V

Lhead





















   where 
D

8


  Pile compressibility 

       = Ep/GL Pile-soil stiffness ratio 
 

Pile head stiffness,
headw

V
, is maximum when L ≥1.5D   
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Section 7: Damage to buildings from differential settlement 
 
Relative displacement  /L:  

L is the length of building segment with consistent sagging or hogging 

 is the maximum settlement of the deformed segment relative to chord L 

 

 

 

 

 

Distortion and maximum tensile strain max in elastic beams of various E/G and L/H: 

 



maxL
 1.0 to 1.5 diagonally in end panels due to shear 

   0.75 to 1.0 longitudinally due to sagging beam 

   0.25 to 0.5 longitudinally due to hogging beam 

 

Onset of visible (~ 0.1mm) cracks in brick or blockwork walls:  max ≈ 0.75 .10-3 

(Burland & Wroth, 1974) 

 

Categories of associated building damage: 

 

Cat. Limit Relative displacement Description Action 

0 - /L ≤   0.5 10-3 negligible none 

1 SLS   0.5 10-3 < /L ≤ 0.75 10-3 very slight redecorate interior 

2 SLS 0.75 10-3 < /L ≤   1.5 10-3 slight + some repointing 

3 SLS   1.5 10-3 < /L ≤     3. 10-3 moderate + significant repointing etc 

4 ULS      3. 10-3 < /L ≤    10-2 severe shore; consider 
demolition 

5 ULS       10-2   < /L very severe demolish 

(Boscardin & Cording, 1989) 
  



L 
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Section 8: Cylindrical cavity expansion 
 
Expansion A  =  A  –  Ao  caused by increase of pressure  c  =  c  –  o 
 

At radius r: small displacement   =  
A
2r

  

 

 small shear strain   =  
2
r   

 

Radial equilibrium: r 
dr
dr    +  r  –    =  0 

 

Elastic expansion (small strains) c  =  G
A
A   

 

zUndrained plastic-elastic expansion c  =  






 
A

A
ln+

c

G
ln+1c

u
u  

 
Section 9: Tunnel Face Stability 
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Section 10: Ground Movements around tunnels 
 
 

𝑤 = 𝑤௠௔௫𝑒
ି
ଵ
ଶ
ቀ
௫
௜
ቁ
మ

 

𝑖 = 𝐾𝑧଴ 

 

Where z0 is the depth of the axis of a tunnel. 

K is 0.65 for soft clay, 0.45 for stiff clay and 0.25 for sand above the water table. 
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