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1 A building site is underlain by a deep overconsolidated clay deposit. Field and
laboratory testing have established the clay has an undrained shear strength of 30 kPa and
a saturated unit weight of 17 kNm−3. The water table is at the ground surface.

A typical column carries a vertical load of 225 kN and a moment of 150 kNm parallel to
one of the sides of the footing.

(a) Calculate the ultimate vertical bearing capacity of the clay for a square footing with
embedment of 1 m without lift-off. [10%]

(b) Suggest a size for the footing, using the allowable bearing capacity calculated
according to Eurocode 7. [40%]

(c) Derive the V-M failure surface and calculate the factors of safety for an increasing
vertical load alone and for an increasing moment alone. [40%]

(d) Explain how a skirted foundation may provide benefits against lift-off and the
limitations of such a solution. [10%]

2 A 1 m diameter steel tubular pile is driven 20 m into a sand deposit with a dry unit
weight of 16 kNm−3 and a saturated unit weight of 20 kNm−3. The steel has a yield
strength of 250 MPa.

(a) If the water table is coincident with the ground surface, calculate:

(i) the lateral load capacity of the pile for a load applied at the ground surface; [30%]

(ii) the wall thickness of the pile required to prevent plastic failure. [20%]

(b) If the water table falls to a depth 5 m below the ground surface, what is the new
lateral capacity of the pile if the load is applied at ground level? [50%]
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3 A new building is designed with a basement on a rectangular mat foundation with
dimensions of 25 m by 35 m. The base of the foundation is 4 m below the ground surface.
The superstructure is exerting loads resulting in a uniform pressure of 200 kPa on the
foundation.

The soil profile consists of a 50 m thick layer of overconsolidated clay overlying bedrock.
The clay has a saturated unit weight of 20 kNm−3 and shear modulus of 10 MPa estimated
from unconsolidated undrained triaxial tests. The water table can be taken to be at the
ground surface.

(a) Calculate the net building pressure. [10%]

(b) Assuming the foundation to be fully flexible, estimate the immediate settlement at
the centre of the foundation and the maximum deflection ratio. Comment on this result in
relation to the performance of the foundation. [30%]

(c) Predict the immediate settlement assuming the foundation is fully rigid. Comparing
the results in part (b) and part (c), which is likely to be more representative of the actual
foundation, and why? [15%]

(d) Consider the situation in which the bedrock is instead at a depth of 25 m. What is
the effect of the shallower bedrock? Estimate the immediate settlement in this case. [30%]

(e) The actual measured settlement is lower than any of the estimates. Why? [15%]
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4 (a) A single reinforced concrete pile, 15 m long and 0.3 m in diameter is bored in
a clay stratum with a stiffness at the surface of 15 MPa increasing linearly with depth to a
value of 25 MPa at the base of the pile.

(i) Why might the pile base stiffness be ignored when calculating the resultant
vertical pile stiffness? [10%]

(ii) Assuming the pile itself to be rigid, calculate the stiffness of the pile to vertical
loads ignoring the stiffness of the pile base. [20%]

(b) Nine piles identical to those in part (a) are now installed in a 3×3 grid with a pile
centre spacing of 1.5 m and their heads connected by a rigid pile cap.

(i) Why does the stiffness of a group of piles differ from that of the individual
piles? [10%]

(ii) Ignoring any bearing capacity of the pile cap, calculate the resultant stiffness
of the pile group to vertical loads. What is the efficiency of the pile group relative
to the individual pile? [60%]

END OF PAPER
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Section 1: ULS and SLS 

Eurocode partial factors for design  

Case 

Actions Ground Properties 

Permanent Variable 
tan  su 

Unfavourable Favourable Unfavourable 

EQU 1.1 0.9 1.5 1.1 1.2 

STR 
(A1) 

1.35 1.0 1.5 1.0 1.0 

GEO 
(A2) 

1.0 1.0 1.3 1.25 1.4 

Case EQU : governs overall stability of a structure 
Case STR : concerned only with the failure of structural members, including foundations and 

retaining structures  
Case GEO : applies to the design of foundations and earthworks  
 

Damage to buildings from differential settlement 
Distortion defined as relative displacement /L:  

L is the length of building segment with consistent sagging or hogging 

 is the maximum settlement of the deformed segment relative to chord L 

 

 

 

 

Distortion linked to local tensile strain  in elastic beams of various E/G and L/H: 

 




L
 1.0 to 1.5 diagonally in end zones due to shear 

  0.75 to 1.0 longitudinally in middle zone due to sagging  

  0.25 to 0.5 longitudinally in middle zone due to hogging  

Onset of visible (~ 0.1mm) cracks in brick or blockwork walls:  max ≈ 0.75 .10-3 
(after Burland & Wroth, 1974) 

Categories of damage associated with masonry walls: 
 

Cat. Limit Relative displacement Description Action 

0 - /L ≤   0.5 10-3 negligible none 

1 SLS   0.5 10-3 < /L ≤ 0.75 10-3 very slight redecorate interior 

2 SLS 0.75 10-3 < /L ≤   1.5 10-3 slight + some repointing 

3 SLS   1.5 10-3 < /L ≤     3. 10-3 moderate + significant repointing etc 

4 ULS      3. 10-3 < /L ≤    10-2 severe shore; consider demolition 

5 ULS       10-2   < /L very severe demolish 

(after Boscardin & Cording, 1989) 



L 
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Section 2: Empirical correlations from geotechnical data 
 
 
2.1 Undrained shear strength of clays (su) 
 

Normally consolidated clay   














nc

'
v

us
0.11 + 0.37 Ip after Skempton (1957) 

       where Ip is the plasticity index 
 

Overconsolidated clay  



















n

ss

nc

'
v

u
'
v

u   after Ladd et al (1977) 

       where  n  is overconsolidation ratio  

       exponent  ≈ 0.8 
 

Penetrometer correlations  
 

erpenetromet

verpenetromet

u
N

q
s


   from q at tip load cell 

 
       where Ncone ≈ 14 ± 2 ; NT-bar ≈ 12 ± 2 
 

     60u N5.4s   kPa  from SPT blow-count N60 

 
 
2.2 Drained shear strength of sands (friction and dilatancy): after Bolton (1986) 
 
Definition of relative dilatancy  IR  =  ID IC – 1 
 
 definition of relative density   ID  =  (emax – e)(emax – emin) 
 

 SPT blow-count correlation  ID  [N60 / (20 + 0.2 ′v kPa)]0.5 

 

 definition of relative crushability IC  =  ln (c/ p) 
 

 aggregate crushing stress  c   ≈    5 000 kPa  for shelly sand    

                 20 000 kPa  for quartz sand 

                 80 000 kPa  for quartz silt 
 

CPT correlation (qcone , ′v  in kPa)   29.1ln5.0qln27.0I vconeD   ± 0.15 (higher if c lower) 

  
 

Peak friction correlation  (max  –  crit) ≈   0.8  max ≈   5° x IR   in plane strain 
 

     (max  –  crit) ≈  3° x IR  in axisymmetric strain 
 

Peak dilatancy rate   (–v / 1)max ≈  0.3 x IR  in all conditions 
 

Critical state friction angle  crit  ≈ 32º (uniform, rounded) → 40º (well-graded, angular) 
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2.3 Stiffness of clays: after Vardanega & Bolton (2011, 2012, 2013) 
 

Very small strains (   10-6)    5.0
30 p
)e1(

B
G 


  with G0, p′  in kPa 

 

  soil fabric factor   B    25 000 within factor 2 
 

Small strains (10-6 <  < 10-2)   a

ref

0
1

1

G

G

















  

 
  hyperbolic curvature parameter a = 0.74 ± 10% 
 

  reference shear strain  ref = 2.2 Ip10-3 ± 50% 
 
 

Moderate mobilizations of strength (0.2su < mob < 0.8su; typical  > 0.1%) 

  mobilised shear strength  

b

2Mu

mob 5.0
s 




















  

   

  mobilization strain   M=2   0.004 n0.7
 

 

  power curve exponent  b   0.37 + 0.01 n   (default value 0.6) 
 
 

Conventional linearised stiffness modulus  G50  or  GM=2 = 0.5 su/M=2 
 
 
 
2.4 Stiffness of sands: after Oztoprak & Bolton (2012) 
 

Very small strains (   10-6)    5.0

30 p
)e1(

B
G 


  with G0, p′  in kPa 

 
  soil fabric factor    B  ≈  50 000 within factor 2 
 
 

Small strains (10-6 <  < 10-2)   
a

ref

e
0

1

1

G

G

















  

  

  hyperbolic curvature parameter  
075.0

cUa


    

           e.g. a  0.9 at uniformity coefficient Uc  4 
 

  reference shear strain   4
D

63.0
cref 10Ie810pU    



  limiting elastic strain   e    0.012 ref  +  2.10-6 
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Section 3: Plasticity theory 
 
 

This section is common to the Soil Mechanics Databook supporting modules 3D1 and 3D2. 
Undrained shear strength (‘cohesion’ in a Tresca material) is denoted by su rather than cu. 
 
 

3.1  Plasticity: Tresca material, max = su 

 

Limiting stresses 
 

 Tresca  31    =  qu= 2su 

 von Mises       2

u

2

u

2

3

2

2

2

1 s2q
3

2
ppp   

 
qu= undrained triaxial compression strength; su= undrained plane shear strength. 
 
Dissipation per unit volume in plane strain deformation following either Tresca or von Mises, 
 

   D  = su 
 
For a relative displacement  x  across a slip surface of area  A  mobilising shear strength  su , 

this becomes 
   D  =  Asux 

 
 
3.2  Stress conditions across a discontinuity: 
 

 

 

Rotation of major principal stress  



 
 

sB  –  sA     =  s         =  2su sin  

1B  –  1A  =  2su sin  
 

In limit with    0 
 

ds  =  2su d 
 

          Useful example: 
 

  =  30º 
 

1B – 1A= su 
 

D / su  =  0.87 
 

 

1A =  major principal stress in zone A 

 

1B =  major principal stress in zone B 

 

 

s u 
 

D 

 

D 

s A s B 

 s 

 
 

  

A B 

 
1A  

1B 

 D 

 

 

A 

B 
D D 

 
discontinuity 

 
1B 

 
1A 

 D 

 
D 
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3.3  Plasticity: Coulomb material   (/’)max  =  tan  

 
Limiting stresses 
 

sin  = (’1f - ’3f)/( ’1f + ’3f) = (1f - 3f)/( 1f + 3f - 2u) 
 

where '1f  and ’3f are the major and minor principal effective stresses at failure, 1f  and 3f 
are the major and minor principal total stresses at failure, and u is the pore pressure. 
 
 
 
3.4  Stress conditions across a discontinuity 

 
 Rotation of major principal 

stress 
 

  =  /2 –    
 

1A  =  major principal stress 
            in zone A 
 

1B  =  major principal stress in 
zone B 

 

tan  = D / ’D 

 
 

 
 

 
 
 
 
 

sin  = sin  / sin ’ 
 

sB/sA = sin( + ) / sin( – ) 
 
 

In limit, d    0 and     ’  
 

ds= 2s. d tan  
 

sB/sA = exp (2 tan ’) 

  

 

 

 

s A  s B  

D 

  

  

 

 
 

  
 1A  1B 

B 

A 

 D 

 D 

D 

D 

 

A 

B 

discontinuity 

    

 1A 

 1B 

 D 

 D 

 

 
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Section 4: Bearing capacity of shallow foundations 
 
4.1 Tresca soil, with undrained strength su 
 
4.1.1 Vertical loading 
 
The vertical bearing capacity, qf, of a shallow foundation for undrained loading (Tresca soil) 
is: 

hsNdsq
A

V
ucccf

ult   

 
Vult and A are the ultimate vertical load and the foundation area, respectively. h is the 

embedment of the foundation base and  (or ’) is the appropriate density of the overburden.  
 
The exact bearing capacity factor Nc for a plane strain surface foundation (zero embedment) 
on uniform soil is: 
 

Nc = 2 +    (Prandtl, 1921) 
 
Shape correction factor: 
For a rectangular footing of length L and breadth B (Eurocode 7): 
 

sc = 1 + 0.2 B / L 
 

The exact solution for a rough circular foundation (B/L=1) is qf= 6.05su, hence sc= 1.18 0.2. 
 
Embedment correction factor: 
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is: 
 

dc= 1 + 0.33 tan-1 (h/D) (or h/B for a strip or rectangular foundation) 
 
4.1.2 Combined V-H loading 
 
A curve fit to Green’s lower bound plasticity solution for V-H loading is: 

If V/Vult > 0.5:  
ultult H

H
1

2

1

2

1

V

V
  or 

2

ultult

1
V

V
21

H

H








  

 
If V/Vult  < 0.5:   H = Hult = Bsu     

 
4.1.3 Combined V-H-M loading 
 

With lift-off:  combined Green-Meyerhof    (Vult = bearing capacity of effective area B-e)  
 

If V/Vult  < 0.5:  









VB

M

H

H

ult

21  

 
 

Without lift-off: 01
H

H

H

H
3.01

M

M

V

V
3

ult

2

ultult

2

ult




































 (Taiebat & Carter 2000) 
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4.2  Frictional (Coulomb) soil, with friction angle  
 
4.2.1 Vertical loading 
 
The vertical bearing capacity, qf, of a shallow foundation under drained loading (Coulomb 
soil) is: 
 

2

B'
Ns'Ns   q

A

V
γ0vqqf

ult 
    

 

The bearing capacity factors Nq and N account for the capacity arising from surcharge and 

self-weight of the foundation soil respectively. ’v0 is the in situ effective stress acting at the 
level of the foundation base. 
 
For a strip footing on weightless soil, the exact solution for Nq is: 
 

Nq = tan2(/4 + /2) e( tan )  (Prandtl 1921) 
 

An empirical relationship to estimate N from Nq is (Eurocode 7): 
 

N = 2 (Nq – 1) tan  
 
Curve fits to exact solutions for  

N= f() are (Davis & Booker 1971): 
 

Rough base: 


 
6.9e1054.0N   

Smooth base:  


 
3.9e0663.0N  

 
Shape correction factors: 
 
For a rectangular footing of length L 
and breadth B (Eurocode 7): 
 

sq = 1 + (B sin ) / L 

s = 1 – 0.3 B / L 
 
For circular footings assume L = B. 
 
4.2.2 Combined V-H loading 
 
The Green/Sokolovski lower bound solution gives a V-H failure surface. 
 
4.2.3 Combined V-H-M loading   
(with lift-off- drained conditions- see failure surface shown above) 
 

2

ultultmh

ultult

2

m

ult

2

h

ult

V

V
1

V

V

tt

)V/H)(BV/M(C2

t

BV/M

t

V/H














































 

where 







 


mh

mhmh

tt2

)tt)(tt(2
tanC   (Butterfield & Gottardi 1994) 

Typically, th~0.5, tm~0.4 and ~15. th is the friction coefficient, H/V= tan , during sliding.
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Section 5: Settlement of shallow foundations 
 
5.1 Elastic stress distributions below point, strip and circular loads 
 
Point loading (Boussinesq solution) 
 

Vertical stress  
5

3

z
R2

Pz3


  

Radial stress  
















zR

R)21(

R

zr3

R2

P
3

2

2r  

Tangential stress 














R

z

zR

R

R2

)21(P
2

 

Shear stress  
5

2

rz
R2

zPr3


  

 
Uniformly-loaded strip 
 

Vertical stress   )2cos(sin
q

v 


  

Horizontal stress  )2cos(sin
q

h 


  

Shear stress  )2sin(sin
q

vh 


  

Principal stresses
 

)sin(
q

)sin(
q

31 





  

 
Uniformly-loaded circle  
(on centerline, r=0) 
 
Vertical stress   
 





























2

3

2v
)z/a(1

1
1q  

 
Horizontal stress  
 


















2/322

3

2/122h
)za(

z

)za(

z)1(2
)21(

2

q

 
 
 

Contours of vertical stress below uniformly-loaded  
circular (left) and strip footings (right) 
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5.2  Elastic stress distribution below rectangular area 
 

The vertical stress, z, below the corner of a uniformly-loaded rectangle (L  B) is: 
 

z= Irq 
 
Ir is found from m (=L/z) and n (=B/z) using Fadum’s chart or the expression below  
(L and B are interchangeable), which are from integration of Boussinesq’s solution. 
 

























































 

1nmnm

1nmmn2
tan

1nm

2nm

1nmnm

1nmmn2

4

1
I

2222

22
1

22

22

2222

22

r
 

 

 

 
 

Influence factor, Ir, for vertical stress under the corner 
of a uniformly-loaded rectangular area (Fadum’s chart) 
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5.3  Elastic solutions for surface settlement 
 
5.3.1 Isotropic, homogeneous, elastic half-space (semi-infinite) 
 
Point load (Boussinesq solution) 

Settlement, w, at distance s:  
s

P

G

)1(

2

1
)s(w




  

Circular area (radius a), uniform soil 

Uniform load:  central settlement:  qa
G

)1(
w o


  

   edge settlement: qa
G

)1(2
w e




  

Rigid punch: (qavg= V/a2)   aq
G

)1(

4
w avgr


  

 
Circular area, stiffness increasing with depth 
 

For G0= 0, = 0.5:   
 

w= q/2m under loaded area of any shape 
w= 0  outside loaded area 

 
For G0> 0, central settlement: 

 circ

0

o I
G2

qa
w    

 For = 0.5, 
)maG(2

qa
w

0

o


  

  
Rectangular area, uniform soil 
 
Uniform load, corner settlement: 
 

 rectc I
2

qB

G

)1(
w


   

 
Where Irect depends on the aspect ratio, L/B: 
 

L/B Irect L/B Irect L/B Irect L/B Irect 

1 0.561 1.6 0.698 2.4 0.822 5 1.052 
1.1 0.588 1.7 0.716 2.5 0.835 6 1.110 
1.2 0.613 1.8 0.734 3 0.892 7 1.159 
1.3 0.636 1.9 0.750 3.5 0.940 8 1.201 
1.4 0.658 2 0.766 4 0.982 9 1.239 
1.5 0.679 2.2 0.795 4.5 1.019 10 1.272 

 

Rigid rectangle: rgd

avg

r I
2

BLq

G

)1(
w


 where Irgd varies from 0.90.7 for L/B = 1-10. 

Note: 
)1(2

E
G


  where = Poisson’s ratio, E= Young’s modulus. 
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5.3.2 Isotropic, homogeneous, elastic finite space  
 
Elastic layer of finite thickness  
 
The mean settlement of a uniformly loaded foundation embedded in an elastic layer 

of finite thickness can be found using the charts below, for 0.5.  
 

E

qB
w 10av g     )1(G2E   

 

The influence factor 1 accounts for the finite layer thickness. The influence factor 0 
accounts for the embedded depth. 
 
 

 
 

Average immediate settlement of a uniformly loaded finite thickness layer 
 

 

Christian & Carrier (1978) Canadian Geotechnical Journal (15) 123-128 
Janbu, Bjerrum and Kjaernsli’s chart reinterpreted 
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5.4  Mobilizable Strength Design (MSD) solutions  
 

Rigid circular foundation on incompressible half-space: Osman & Bolton (2005) 
 

 

 
 
 
 
 
 
 
 
 
 
 

Average shear strain within deformation mechanism:        mob = Mc w/D  1.3 w/D 

Average shear stress mobilized within mechanism:          mob = q / Nc   q / 6 

Representative depth for stress-strain behaviour:                zrep = 0.3D 

 

V or H or M loading:  Osman et al. (2007) Geotechnique 57 (9) 729-737 
 

Vertical loading V = mob

2D5.1   corresponding to D/w3.1mob   
 

Horizontal loading H = mob

2D25.0    corresponding to D/u5.8mob   
 

Moment loading M = mob

3D17.0    corresponding to  2mob
 

 
 

 
5.5 Atkinson’s Equivalent Stiffness G*:  Osman, White, Britto & Bolton (2007) 
 
Rigid smooth circular foundation on a deep homogeneous bed 
 

Vertical loading V  for linear soil:  settlement 
 

GD

V

2

1
aq

G

)1(

4
w avg





    

 

   for power-law soil: use G* determined at 
D2

w
  

 

Moment loading M for linear soil:  rotation 
 

3GD

M13 
  

 

   for power-law soil: use G* determined at   = 0.68 


Rigid rough circular foundation on a deep homogeneous bed 
 

Shear loading H  for linear soil:  displacement 
 

  GD
H

87

116
u




  

 

   for power-law soil: use G* determined at 
D

u15.1
  

Rectangular foundations: Use D = LB

Passive 

D
  
 

D/√2 
 Fan 

Active 

Fan 

Passive 
w z,v 

r,u 

quadratic displacement field 

Vertical deformation mechanism 
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Section 6: Bearing capacity of deep foundations 
 
 
6.1 Axial capacity: API (2000) design method for driven piles 
 
6.1.1 Sand 
 

Unit shaft resistance:  lim,s0vhfsf tan'Ktan'       

 
Closed-ended piles:  K = 1 
Open-ended piles:  K = 0.8 
 

Unit base resistance:  qb = Nq ’vo  < qb,limit 

 

Soil 
category 

Soil density Soil type Soil-pile 
friction 

angle,  () 

Limiting 

value s,lim 
(kPa) 

Bearing 
capacity 
factor, Nq 

Limiting 
value, qb,lim 

(MPa) 

1 Very loose 
Loose 
Medium 

Sand 
Sand-silt 
Silt 

15 50 8 1.9 

2 Loose 
Medium 
Dense 

Sand 
Sand-silt 
Silt 

20 75 12 2.9 

3 Medium 
Dense 

Sand 
Sand-silt 

25 85 20 4.8 

4 Dense 
Very dense 

Sand 
Sand-silt 

30 100 40 9.6 

5 Dense 
Very dense 

Gravel 
Sand 

35 115 50 12 

API (2000) recommendations for driven pile capacity in sand 
 
6.1.2 Clay 
 
American Petroleum Institute (API) (2000) guidelines for driven piles in clay. 
 

Unit shaft resistance:  























 









 





25.0

u

vo

5.0

u

vo

u

s

s
  ,

s
Max5.0

s
 

It is assumed that equal shaft resistance acts inside and outside open-ended piles. 

 
Unit base resistance:  qb = Nc su  Nc = 9. 
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6.2 Axial capacity: base resistance in sand using Bolton’s stress dilatancy 
 
 
Unit base  resistance, qb, is expressed as a function of relative density, ID, constant 

volume (critical state) friction angle, cv, and in situ vertical effective stress, ’v. 
 

 
 

Design charts for base resistance in sand 
(Randolph 1985, Fleming et al 1992) 
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6.3  Lateral capacity: linearly increasing lateral resistance with depth 
 
Lateral soil resistance (force per unit length), Pu = nzD 
 

In sand, n = ’Kp
2 

In normally consolidated clay with strength gradient k; su = kz; n=9k 
 
 

Hult ultimate horizontal load on pile 

Mp plastic moment capacity of pile 
D pile diameter 
L pile length 
e load level above pile head  

(=M/H for H-M pile head loading) 

’ effective unit weight 
Kp passive earth pressure coefficient,  

Kp= (1+ sin )/(1- sin ) 
 
 
 
 

 
 

 
        Short pile failure mechanism   Long pile failure mechanism 

 
Lateral pile capacity 

(linearly increasing lateral resistance with depth) 
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6.4  Lateral capacity: uniform clay 
 
Lateral soil resistance (force per unit length), Pu, increases from 2suD at surface to 
9suD at 3D depth then remains constant. 
 
 
Hult ultimate horizontal load on pile 
Mp plastic moment capacity of pile 
D pile diameter 
L pile length 
e load level above pile head  

(=M/H for H-M pile head loading) 
su undrained shear strength 

 

             

 

 

 

 

 
        Short pile failure mechanism   Long pile failure mechanism 

 
Lateral pile capacity 

(uniform clay lateral resistance profile) 
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Section 7: Settlement of deep foundations 
 
7.1  Settlement of a rigid pile  

 
Shaft response: 

Equilibrium:  

r

R
s  

Compatibility: 

 
dr

dw
  

Elasticity: 

G



  

Integrate to magical 
radius, rm, for shaft 

stiffness, s/w.    Nomenclature for settlement analysis of single piles 
 
Combined response of base (rigid punch) and shaft: 

w

Q

w

Q

w

V s

base

b

head

      








avgbasebase

head

LG2

1

GR4

w

V
 

D

L

G

G2

D

D

G

G

1

2

DGw

V

L

avgbase

L

base

Lhead 





   

D

L2

1

2

DGw

V

Lhead












  

These expressions are simplified using dimensionless variables: 

Base enlargement ratio, eta = Rbase/R = Dbase/D Slenderness ratio     L/D  

Stiffness gradient ratio, rho  = Gavg/GL  Base stiffness ratio, xi   = GL/Gbase 

It is often assumed that the dimensionless zone of influence, =ln(rm/R) = 4.  

 

More precise relationships, checked against numerical analysis are: 

 









D

L
)5.0)1(5(5.0ln    for =1: 










D

L
)1(5ln  

 

7.2  Settlement of a compressible pile 
 

D

L

L

Ltanh

)1(

81
1

D

L

L

Ltanh2

)1(

2

DGw

V

Lhead

























   where 
D

8


  Pile compressibility 

       = Ep/GL Pile-soil stiffness ratio 

 

Pile head stiffness,
headw

V
, is maximum when L ≥1.5D   


