$$
Post exam \t2021
$$
\n
$$
Post exam \t2021
$$
\n
$$
\frac{12.13 \pm 13.166 \text{ m/s}}{1000}
$$
\n
$$
\frac{M}{2} \frac{1}{2} \frac{M}{2} \
$$

0 cont.

\n7 =
$$
\frac{1}{6 \cdot 3}
$$
 = 3.3 S, $\frac{1}{1} = \frac{1}{5 \cdot 3}$ = 0.3 ⇒ DAF = 1.6 (dashed)

\n1. Imax = 1.6x 0.083 = 0.13 m

\nd). Resonance of the fundamental mode may best be controlled by the addition of one or more treated-mass damage, true to the 0.3 Hz frequency of the mode.

Q1 Dynamics of a tower block

A straightforward question about the dynamical characteristics of a tall building (which just happened to have a passing resemblance to the Bahrain World Trade Center on the front of the 2009 Databook). Most attempts were reasonable and most errors were algebraic during the various integrations.

a) When soils are shaken againsthear stresses cause soils lo tend to contract, especially for loose soils. If pores are Saturated and Water connot escape due to low permeability, the trigh bulk modulus of water will mean the soil cannot compress and the tendency to contract will be exhibited as an increase in pore pressure. High port pressures reduce effective stresses. Lou effective stresses que locs strength stiffness est. hence liquidaction.

SAND We hence need -SATURATED LOOSE

b) Densitication is most popular method, either drop weights on surface of force in probe to compact soil. Stone columns can improve drainage reducing e.p.p. or other techniques such as MICP.

 $c)$ i) $G_{max} = 100 (3-e)^2 \sqrt{p^1}$ \int \int 1 $H e$ $e = 0.8$ $\sigma_v = 24 \times 21 + 18.5 \times 0.5$ $= 33.25 kP_5$ $p' = \sigma_v(1+2K_0)/3 = 18.25(1+2(0.42))/3 = 11.2kPa$ $U = 15 \text{ kPa}$ at 1.5m depth $K_0 = \frac{0.5}{0.7} = 0.42$ 1.54 , 18.25 kPa $\nu = 0.3$ 22^{3} in $26 - 19$ 2 bPc

$$
G_{max} = 100 \times 212^{2}
$$

118 $\sqrt{\frac{1112}{1000}}$

$$
=
$$
 28.46 MP_c

from databook $l_{1}b=2m$ $\frac{l}{b} = 1$ $\frac{e}{b} = \frac{1}{2}$ $=$: $\lfloor m \rfloor$ $K_{hx} = \frac{Gb}{2-v}$ $\left[6.8 \left(\frac{L}{b} \right)^{0.65} + 2.4 \right] \left[1 + \left\{ 0.33 + \frac{134}{11} \right\} \left(\frac{e}{b} \right)^{0.8} \right]$ $=1$ $rac{6}{17}$ [9.2][1.574] = 17.0 G

$$
= 485 \frac{\text{MN}}{\text{m}}
$$

$$
K_{ry} = \frac{Gb^{3}}{1-\nu} \left[3.73 \left(\frac{L}{b} \right) + 0.27 \right] \left[1 + \frac{e}{b} + \frac{1.6}{0.35} \left(\frac{e}{b} \right)^{4} \right] \left(\frac{e}{b} \right)^{2}
$$
\n
$$
= \frac{Gb^{3}}{1-\nu} \left[4.0 \right] \left[1.796 \right] = 82.1G
$$
\n
$$
= 2337 \frac{MN_{my}}{m_{rad}}
$$
\n
$$
m_{rad}
$$
\n
$$
= 38,400 kg
$$
\n
$$
= 38,400 kg
$$
\n
$$
= 106 \text{ rad/s} = \frac{16.8 \text{ Hz}}{1.33.1 \text{ rad/s}}
$$
\n
$$
= 106 \text{ rad/s} = \frac{16.8 \text{ Hz}}{1.33.1 \text{ rad/s}}
$$
\n
$$
= 106 \text{ rad/s} = \frac{16.8 \text{ Hz}}{1.33.1 \text{ rad/s}}
$$

Q2 Liquefaction and foundation vibration

Most scored highly on the first parts, describing liquefaction and its possible remedies. On the numerical part, there were quite a few errors in the effective stress calculation. A common error was thinking the pore water had only half a meter (rather than 1.5m) of hydrostatic pressure beneath the slab. There were, of course, quite a few arithmetic errors when evaluating those long Wolff formulae.

For the final part, a few people actually ignored the mass and rotational inertia of the foundation, and considered the machine alone.

 $4D6$ $Q3$ $2021.$ a) In Response Spectrum Analysis, as used in earthquake engineering, the response spectaum is defined as the response of a set of s.d.o.f oscillators of various frequencies to given input, such as the grand notions of a particular earthguake, or an idealised, averaged earthquake. Spectral analysis in wind engineering theory of buffetting is when random vibration theory is applied to determine the response of a structure to buffetting by incident turbulence. Unlike in earthquake engineering this takes account of spatial as well as temporal variations in the applied pressures. It involves many "Spectra" each being the Fourier transforms of some signal, (one of which might be the displacement at some point on the structure, i.e. the "response"). Background calculations (NOT REQUIRED FROM THE STUDENTS) R_1 R_2 $\begin{array}{c} \mathbf{L} & \mathbf{L} & \mathbf{L} & \mathbf{L} \\ \mathbf{L} & \mathbf{L} & \mathbf$ $R_1 =$ Contilever $36x10^3$ $24x10^3$
 $24x10^3$ $5 = W123$ $3ET$ $W = 3ETG$ $k = 3(2000 \text{ km}^2)(\frac{1}{5^3} + \frac{1}{3^3}) = 3(2000)(0.045)$ $\sqrt{L^3}/4-k$ $M_{\frac{1}{2}}$ $m = 6EI$, $SL = 2M$, $S = \{12EI|J|K - k$ $\frac{k_{2}}{s}=\frac{1}{s^{2}}$ $k_1 = 2(1251) = 24(2000) = 75041m$
 $206then$ $M = 24000$ 0]
 $M = 36000$ leg $K = 750 - 750$ $\sqrt{140^3 N/m}$. $Matab,$ $\omega^2 = \omega q \left[\frac{1}{M} \left(\frac{M}{M} \right) * K \right] \rightarrow f = 0.3275Hz, 1.1841Hz.$ $eves = \begin{bmatrix} 1 \\ 0.865 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -0.7712 \end{bmatrix}$

4D6 Q3, 2021 1) i) a= 0.3g, d= 8inches = 203mm $F_{\overline{19}}, 3$ b) ii) $f_1 = 0.33412$ $w_1 = 207 \text{ rads/s}$ $T_1 = 1/4 = 3.03 \text{ sec}$ $S_a = 0.19$
 $f_2 = 1.1842$ $w_2 = 7.91 \text{ rads/s}$ $T_2 = 1/62 = 0.85 \text{ sec}$ $S_a = 0.59$ From Fig 3, $M_{eq1} = [24(1)^2 + 36(0.86)^2]$ tonne = 50.6 tonne.
 $M_{eq2} = [24(1)^2 + 36(0.77)^2]$ tonne = 45.4 tonne $\frac{F_1}{m_{eq}} = m_1u_1 + m_2u_2 = 24 + (0.86)36 = 55.0 = 1.086$ 50.6 50.6 $=24+(-0.77)36 = -3.72 = -0.082$ Γ ₂ = 45.4 $45 - 4$ Model: $S_{d_1} = S_{a_1} = (0.1)(4.81) = 0.23 m$ (v 9 unches) $\sqrt{Fig3}$ Model: $S_{d_2} = S_{a_2} = (0.5)(9.81) = 0.09m$ (~ 3.5 inches) $u_1 = \Gamma_1 S_d \phi_1 = (1.086)(0.23m) \left[1 \right] = 0.25 \right] m$ $u_2 = \Gamma_2 S_{dz} \phi_2 = (0.082)(0.09m) \begin{bmatrix} 1 \\ -0.77 \end{bmatrix} = \begin{bmatrix} 0.01 \\ -0.01 \end{bmatrix} m (tmy)$ $Bothom floor: SRSS = \sqrt{(0.21)^2 + (0.01)^2} = O(21m)$ Shear $S = \left(\frac{36I}{L^3}\right)J = 3(2000)kNm^2(0.21m) = \frac{467kN}{m^3}$ (Top storey interstorey drift is clearly less critical) Alternaturely: Base sheer = $\Gamma^2 M_{eg} S_a = (1.086)^2 (50.6 \times 10^3)(0.1 \times 9.81 \text{ m/s}^2) = 58.5 \text{ km}$
(for mode) - ignore mode 2) $\frac{1}{\frac{1}{3}}$ for ata by Aiffness. $\frac{1}{3^{3}} = \frac{0.037}{0.0870.037} = 0.821 \Rightarrow (0.821)(58.560)$ for 3m column

426 2021, Q3. c). First mode $T_i = 3.03$ seconds. Column shear capacity = 20 kN
but from b) we need 46.7 kN of elastic, Sis we only want 1st floor to have an elastic deflection of
0.21m x (20 km) = 0.09m $S_1 = \Gamma S_{d_1} \overline{\Phi}_{1st} = \Gamma S_{a_1} \overline{\Phi}_{1st} = 0.09m$ $\sqrt{1-\sqrt{1-\lambda^2}}$: $S_a = S_i \omega_1^2 = (0.09m)(2.07)^2/s^2 = 0.41 m/s^2$
 $T_i \overline{D}_{left}$ $\hat{\mathcal{C}}$ $\hat{\mathbf{q}}_n$ The PGA at the site = 0.45g. so require S_a in Fig 4 p(st = 0.042g = 0.09g)
(which is for $PGA = \frac{1}{9}$) 0.45 $\frac{11e_{6.}}{19} = \frac{0.0429}{0.459}$ From Fig.4., $T=3.03~secs, S_a = 0.09g \rightarrow \mu \approx 6$ regid.

Most students could explain the difference between response spectrum analysis in earthquake engineering and the spectral analysis used in wind engineering. Many students did not read the correct PGA and PGD from the graph. Estimates of the peak column shear were generally reasonable. A common error was omitting the floor masses from the modal participation factor (which is only possible if all floor masses are equal, and thus cance[®]. Another error was to assume that both base columns carried the same shear. A few students managed to obtain the correct ductility factor from the inelastic response spectra, and many followed the method through correctly, but with earlier numerical errors (which were not penalised twice).

476 Q4 2021.

 $\hat{}$

Force = $\frac{1}{2}\rho V^{2}G D = \frac{1}{2}(1.25)(60)^{2}(1.2)2$
per unit
flueght = 5.4 kn/m. \Rightarrow $\alpha)$ 8 J WITW2 4004-5m, 5ag. $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ Moments = $(5.411/m \times 8m) \times 4m$ about $A = 173$ kNm $(=\frac{195}{600} +5m)$ A Restory noment required = 2-5 x (195 kNm) = 488 kNm $F. o. S.$

Tank weight 4 home = 40h1 (assume empty - work case)					
Slab = (4K4×t) m³ x 24 haf/m³ = 384+ km					
1	Most required	14			
2	1	1			
3	1	2.5m du. $L = (488 - 40) / 384 = 0.53m$ slab functions			
1	2.5m du. $L = (488 - 40) / 384 = 0.53m$ slab functions				
2	2.5m du. $L = T r^3 t = T (1.25)^3 (0.01) m t$				
3	1	2.5m du. $L = T r^3 t = T (1.25)^3 (0.01) m t$			
3	1	2	1		
3	1	2	1		
3	1	2	1		
3	1	2	1		
3	1	2	2		
3	2	2	2	2	2
3	2	2	2		
3	2	2	2		
3	2	2	2		
3	2	2	2		
3	2				

4D6 Q4 2021 4bii) Strouhal number of cylinder = 0.2 for high Re. $St = f. b$ diander
 $= f. b = (2.34) (2.5m)$ (data sheet) $=29m/s$ Scrittin runise Sc = 20m $\left[\hat{U}\right]$ $\frac{d_5=log,decrenuth}{2\pi G}$ fraction of critical. Need to assume a value for damping, A steel structure could be
as low as $\frac{6}{5} = 0.5\%$ citical, but foundation may puch this up $\frac{c.5c}{\rho^{62}} = \frac{4\pi\zeta m}{\sqrt{(1.25 \log (m^3))(2.5^2)m^2}}$ $= 5.6$ $\frac{y_{max}}{s} = \frac{1.5D}{s} = \frac{1.5(2.5)}{5.2} = \frac{0.7m}{s} (large.)$ (at 2-3Hz, for
29 m/s windspeed). Helical strakes disrupt the heightwise coherence of the
shed vertices creating a more disordered, highly

3-dimensional wake. Forces are therefore not in synchrony
up the height of the structure, thus amplitudes are greatly

There were only a few attempts, and these were generally good. Estimating the frequency of the cantilever proved the greatest difficulty as no method was suggested: almost every student tried a different method, with the two thirds mass at two thirds height being perhaps the simplest reasonable approximation. Similarly, students needed to assume the damping for the Scruton number calculation: most picked 5% of critical but without any justification. The damping for a steel structure like this could be almost an order of magnitude smaller, but perhaps soil damping could push this figure up, all of which could have been mentioned.