EGT3

ENGINEERING TRIPOS PART IIB

Tuesday 23 April 2024 14.00 to 15.40

Module 4D7

CONCRETE AND PRESTRESSED CONCRETE

Answer all questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper Graph paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

Attachment: 4D7 Data Sheet (5 pages)

Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Version JJO/6

A reinforced concrete office building, built in 1956, is shown in Fig. 1. The existing structure comprises of a car park at ground level, and an office space at first floor level. The office space is supported on tapered concrete beams (ABCD), which vary linearly in total height from 250 mm to 500 mm over the 2400 mm tapered section (CD). It is proposed to add one extra storey to the frame, as shown by the dotted line in Fig. 1, and convert the building into residential units.

Eight concrete cores, each 50 mm in diameter and 50 mm long, have been taken from various positions in the structure. Compression testing of these cores gives a mean strength of 55 MPa and standard deviation 4 MPa. The steel is assumed to be deformed bars with a characteristic yield strength of 250 MPa. Investigations show that cover to the steel is 25 mm.

- (a) Calculate the characteristic (95th percentile) concrete compressive strength. [5%]
- (b) What are the limitations of your estimate of the characteristic concrete strength, and discuss how useful it may be for the purposes of assessing an existing structure. [15%]
- (c) Draw shear force and bending moment diagrams for the tapered beam section under the proposed loading. State any assumptions about the load paths in the structure clearly. You may use partial factors of $\gamma_g = 1.35$ and $\gamma_q = 1.5$. [25%]
- (d) The beam ABCD has breadth b = 200 mm, and is found to have 10 mm diameter links at 150 mm centres in the tapered span. Calculate the shear capacity in the tapered section of the beam at two locations. Comment on your results and assess the viability of the proposed extension. [55%]

(cont.

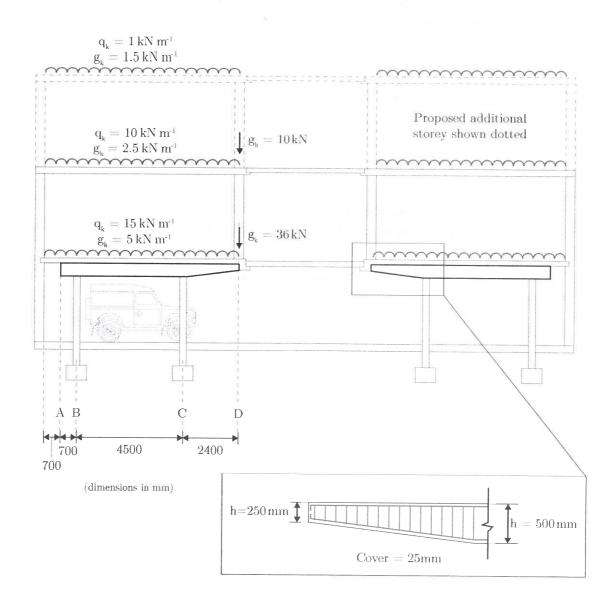


Fig. 1

Version JJO/6

- A reinforced concrete frame built in 1956 is being assessed. All elements to the frame have cover to reinforcement of 25 mm. Carbonation depths were measured at five locations on the frame, with subsequent testing revealing carbonation depths from the surface of 20 mm, 18 mm, 5 mm, 3 mm, and 2 mm. Chloride content was also measured and, on average, chloride contents were 0.60 % by weight of cement at 5 mm from the surface, and 0.30 % by weight of cement at 15 mm from the surface.
- (a) Estimate the remaining life of the structure before the steel may be at risk of corrosion.

 Comment on your results.

 [50%]
- (b) What other factors affect the time to initiation and rate of corrosion? [20%]
- (c) Suggest two interventions that will reduce the rate of deterioration of the structure, and enable it to remain in service for at least another 200 years. [15%]
- (d) What role does the reuse of concrete assets play in sustainable design? [15%]

Version JJO/6

- A prefabricated prestressed concrete beam has a rectangular cross section. The beam is loaded by a sagging moment which varies between 25 kN m and 100 kN m. The moment at transfer is 5 kN m. The characteristic compressive strength of the concrete is 10 MPa at transfer and 15 MPa at 28 days.
- (a) Determine the minimum effective depth of the beam if the aspect ratio of the beam (effective depth d to width b) is 2:1 and using the stress limitations in tension and compression given in Table 1. You may assume a loss ratio R of 0.7. [30%]

Table 1								
	Transfer	Working load						
Tension	$f_{tt} = -1.0 \text{ MPa}$	$f_{tw} = 0.0 \text{ MPa}$						
Compression	$f_{ct} = 0.40 f_{ck}$	$f_{cw} = 0.33 f_{ck}$						

- (b) Determine the position of the centroid, the second moment of area, and the elastic moduli for the top and bottom fibre using the effective depth calculated in (a) rounded to the nearest multiple of 50 mm. The effect of the small area of the prestressing tendon can be ignored. Assume the total height of the beam h = d + 50 mm. [20%]
- (c) With the above mentioned permissible stresses in the concrete under the working load, draw a Magnel diagram and determine the maximum permissible prestress if the tendon could be placed anywhere in the section. [40%]
- (d) What eccentricity does the cable need to be placed at to result in a zero stress at the top face of the beam due to the prestress? [10%]

END OF PAPER

THIS PAGE IS BLANK

Module 4D7: Data Sheet

Ultimate limit states

For STR and/or GEO it shall be verified that:

$$E_d \le R_d \tag{1}$$

The design value of the effect of actions, E_d , is given by:

$$E_{d} = E\left\{ \sum_{j \geq 1} \gamma_{G,j} G_{k,j} + \gamma_{p} P'' + \gamma_{Q,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i} \right\}$$
(2)

Material partial factors are normally $\gamma_s = 1.15$ for steel and $\gamma_c = 1.5$ for concrete; Partial factors on actions are normally $\gamma_{G,j} = 1.35$ and $\gamma_{Q,1} = 1.5$.

Serviceability limit states

It shall be verified that:

$$E_d \le C_d \tag{3}$$

The characteristic combination is:

$$E_d = E\left\{ \sum_{j\geq 1} G_{k,j} + P'' + Q_{k,1} + \sum_{i>1} \psi_{0,i} Q_{k,i} \right\}$$
(4)

The frequent combination is:

$$E_d = E\left\{ \sum_{j\geq 1} G_{k,j} + P'' + V''_{1,1} Q_{k,1} + \sum_{i>1} \psi_{2,i} Q_{k,i} \right\}$$
 (5)

Probability of failure

Design values of actions:

$$F_d = F_k \gamma_f \tag{6}$$

$$F_k = \mu_s + 1.645\sigma_s \tag{7}$$

$$\sigma_s = CoV \times \mu_s \tag{8}$$

Where F_d is the design value; γ_f is the partial safety factor; F_k is the characteristic value, μ_s is the mean value, σ_s is the standard deviation, and CoV is the coefficient of variation.

Design values of product properties:

$$X_d = \frac{X_k}{\gamma_m} \tag{9}$$

$$X_k = \mu_R - 1.645\sigma_R \tag{10}$$

$$\sigma_R = CoV \times \mu_R \tag{11}$$

Where X_d is the design value; γ_m the partial safety factor; X_k the characteristic value, μ_R the mean value, σ_R the standard deviation, and CoV the coefficient of variation.

Reliability index, β

$$\beta = \frac{\mu_R - \mu_s}{\sqrt{\sigma_R^2 + \sigma_s^2}} \tag{12}$$

Probability of failure:

$$P_f = \Phi(-\beta) \tag{13}$$

Where Φ is the standard normal cumulative distribution function.

The difference between two normally distributed variables is itself normally distributed, with mean equal to the difference of the means, and variance the sum of the squares of the standard deviations.

Durability considerations

Uniaxial diffusion into a homogenous material:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \tag{14}$$

Solution:

$$C_x = C_0 \left[1 - \operatorname{erf}(z) \right] \tag{15}$$

$$z = \frac{x}{2(Dt)^{0.5}} \tag{16}$$

Table of erf(z)

z	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	∞
erf(z	0	0.11	0.22	0.33	0.43	0.52	0.60	0.68	0.74	0.80	0.84	0.88	0.91	0.93	0.95	0.97	1.00

Deflections

Interpolated curvature:

$$\alpha = \zeta \alpha_{||} + (1 - \zeta) \alpha_{||} \tag{17}$$

Where α is a deflection, α_l and α_{ll} are the values for the uncracked and fully cracked conditions, ζ is a distribution coefficient:

$$\zeta = 1 - \beta \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2 \tag{18}$$

Where σ_{sr} is the stress in the tension reinforcement calculated on the basis of a cracked section under the loading conditions causing first cracking; σ_s is the stress in the tension reinforcement calculated on the basis of a cracked section; $\beta = 1.0$ for single short term loading and $\beta = 0.5$ for sustained loads or many cycles of repeated loading.

ULS Flexure

A doubly reinforced concrete section when flexural strength is reached is shown in Figure 1. It is usual to assume that failure occurs when the extreme fibre compressive strain in the concrete reaches a limiting value of 0.0035. Forces are found by equilibrium of the section.

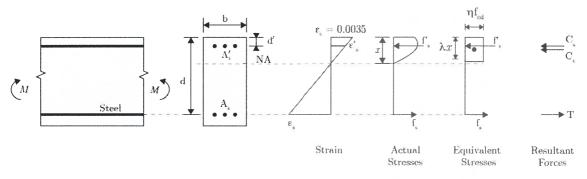


Figure 1

	$f_{ck} \leqslant 50 \text{ MPa}$	$50 \text{ MPa} < f_{ck} \leqslant 90 \text{ MPa}$
λ	0.8	$0.8 - (f_{ck} - 50)/400$
η	1.0	$1.0 - (f_{ck} - 50)/200$

ULS Shear and Torsion

For unreinforced webs at ULS:

$$V_{Rd,c} = \left[\frac{0.18}{\gamma_c} k \left(100 \rho_1 f_{ck} \right)^{\frac{1}{3}} + 0.15 \sigma_{cp} \right] b_w d$$

$$\geq \left(v_{min} + 0.15 \sigma_{cp} \right) b_w d$$
(19)

$$\begin{aligned} k &= 1 + (200/d)^{0.5} \leq 2.0 \\ \gamma_c &= 1.5 \end{aligned}$$

$$\begin{split} \rho_1 &= A_s/b_w d \; (\rho_1 \leq 0.02) \\ v_{min} &= 0.035 k^{3/2} f_{ck}^{1/2} \end{split}$$

For reinforced webs at ULS:

$$V_{Rd,s} = \frac{A_{sw}}{s} z f_{ywd} \cot \theta \tag{20}$$

$$V_{Rd,max} = \alpha_{cw} b_w z \nu_1 f_{cd} / \left(\cot \theta + \tan \theta \right) \tag{21}$$

 $\alpha_{cw}=1$ for non-prestressed structures

 $v_1 = 0.6$ for $f_{ck} \le 60$ MPa and $v_1 = 0.9 - f_{ck}/200 > 0.5$ for $f_{ck} \ge 60$ MPa

The shear stress in a wall of a section subject to pure torsion:

$$\tau_{t,i} t_{ef,i} = \frac{T_{Ed}}{2A_k} \tag{22}$$

 $\tau_{t,i}$ = torsional stress in wall i; $t_{ef,i}$ = effective wall thickness (= total area of cross section / outer circumference), A_k = area enclosed by centrelines of the walls including inner hollow areas.

Prestressed concrete

Elastic analysis: compression is positive. Eq.(23) applies for both top and bottom fibres since Z_i has sign:

$$\sigma = \frac{P}{A} + \frac{Pe}{Z_i} - \frac{M}{Z_i} \tag{23}$$

To design prestress, stress inequalities take the form:

$$f_c \ge \frac{P}{A} + \frac{Pe}{Z} - \frac{M}{Z} \ge f_t \tag{24}$$

For fibre 1 (top):

$$-\frac{Z_1}{A} + \frac{f_c Z_1}{P} + \frac{M}{P} \le e \le -\frac{Z_1}{A} + \frac{f_t Z_1}{P} + \frac{M}{P}$$
 (25)

For fibre 2 (bottom):

$$-\frac{Z_2}{A} + \frac{f_c Z_2}{P} + \frac{M}{P} \ge e \ge -\frac{Z_2}{A} + \frac{f_t Z_2}{P} + \frac{M}{P}$$
 (26)

Cumulative normal distribution function

THE CUMULATIVE NORMAL DISTRIBUTION FUNCTION

$$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{x^2}{2}} dx$$
 FOR $0.00 \le u \le 4.99$.

<i>γ</i>										
14	-00	.01	·02	-03	•04	·o5	-06	·07	-08	-09
-0	.5000	.5040	-5080	·5120	·5160	·5199	-5239	-5279	-5319	-5359
·I	·5398	·5438	.5478	.5517	.5557	5596	·5636	-5675	.5714	·5753
•2	.5793	.5832	-5871	-5910	.5948	.5987	-6026	-6064	-6103	-6141
.3	-6179	-6217	6255	-6293	6331	6368	·6406	-6443	-6480	-6517
•4	6554	∙6591	6628	-6664	.6700	6736	6772	6808	-6844	6879
-5	-6915	·6 95 0	-6985	.7019	7054	·7088	7123	-7157	-7190	.7224
-6	.7257	·729I	.7324	7357	.7389	-7422	.7454	·7486	.7517	7549
.7	-7580	·7611	.7642	-7673	7703	.7734	.7764	7794	.7823	7852
-8	-788I	7910	7939	7967	7995	·8023	8051	8078	8106	8133
.9	8159	·8186	8212	-8238	·8264	·8289	-8315	-8340	·8365	-8389
1.0	·8413	-8438	·8461	-8485	-8508	-8531	·8554	·8577	-8599	-8621
1.1	-8643	-8665	-8686	8708	.8729	-8749	·8770	-8790	-8810	·8830
1.2	-8849	-8869	-8888	-8907	8925	8944	8962	-8980	-8997	90147
1.3	90320	90490	-90658	90824	90988	91149	·91309	91466	-91621	91774
1.4	91924	92073	92220	92364	92507	92647	92785	92922	93056	93189
1.5	.93319	·93448	93574	93699	.93822	·93943	-94062	-94179	-94295	-94408
1-6	94520	94630	94738	94845	94950	-95053	95154	95254	95352	95449
1.7	95543	95637	-95728	95818	95907	95994	96080	96164	96246	-96327
τ.8	-96407	96485	96562	96638	96712	-96784	-96856	96926	-96995	97062
1.9	97128	97193	97257	97320	97381	·9744I	97500	97558	97615	97670
2.0	·97725	-97778	·97831	97882	97932	-97982	·98030	-98077	-98124	-98169
2.1	·98214	.98257	·98300	98341	-98382	-98422	·98461	·98500	-98537	-98574
2.2	-986 1 0	-98645	98679	.98713	98745	-98778	-98809	·98840	-988 7 0	·9889 9
2.3	98928	98956	-98983	·92 0097	·920358	·920613	·92 0863	-92 1106	·92 1344	·92 1576
2.4	·9² 1802	·9 ² 2024	·922240	·92 2451	·9² 2656	-92 2857	·9² 3053	·9² 3244	923431	-92 3613
2.5	·9² 3790	·9² 3963	-9 ² 4132	·9² 4297	·9² 4457	·9² 4614	·9² 4766	·92 4915	·9² 5060	·9² 5201
2-6	·9² 5339	·9 ² 5473	-92 5604	-9 ¹ 5731	·9 ³ 5855	·9² 5975	·9² 6093	-92 6207	-9 ² 6319	·9² 6427
2.7	-9 ² 6533	·9² 6636	-9 ² 6736	·9² 6833	·9² 6928	·9² 7020	927110	-927197	-9² 7282	-92 7365
2.8	°9° 7445	·9² 7523	·9² 7599	-9° 7673	·9² 7744	-9 ² 7814	-9² 7882	·9² 7948	928012	·9² 8074
2.9	·928134	·928193	·9² 8250	-9² 8305	-9² 8359	-928411	-928462	-9 ² 8511	-9 ² 8559	-9 ² 8605
3.0	-92 8650	192 8694	·9² 8736	·92 8777	·928817	·9² 8856	·9² 8893	·9² 8930	-9±8965	-92 8999
3.1	-930324	-93 0646	·910957	-93 1260	·93 1553	·9³ 1836	-93 2112	·9³ 2378	·9³ 2636	·93 2886
3.2	·93 3129	·9³ 3363	·9³ 3590	-93 3810	·93 4024	-9 ³ 4230	·9 ³ 4429	·91 4623	-9 ³ 4810	·9³ 4991
3.3	·93 5 1 6 6	·93 5335	·93 5499	-93 5658	-93 5811	·9³ 5959	-93 6103	-93 6242	·936376	-93 6505
3·4	·9 ¹ 6631	93 6752	·93 6869	-93 6982	·91 7091	-937197	·9³ 7299	93 7398	·9³ 7493	·9 ³ 7585
3.2	93 7674	·9³ 7759	9 7842	-93 7922	-9³ 7999	93 8074	·918146	93 8215	-938282	·9³ 8347
3.6	·93 8409	918469	93 8527	·93 8583	-93 8637	-9 ³ 8689	·93 8739	·918787	·9³8834	·9³ 8879
3.7	·93 8922	-93 8964	-940039	-940426	-94 0799	·94 1158	·94 1504	-94 1838	942159	·9+2468
3⋅8	-942765	-94 3052	943327	94 3593	-94 3848	·9* 4094	·94 4331	·9* 4558	·9*4777	-94 4988
3.9	·9*5190	94 5385	945573	·9 ⁴ 5753	-94 5926	-946092	-946253	94 6406	-946554	·946696
4.0	-9*6833	-916964	917090	947211	947327	947439	917546	-94 7649	917748	94 7843
4·I	·9 ⁴ 7934	-948022	948106	-948186	·9·8263	-9+8338	9 8409	948477	948542	948605
4.2	-948665	-9+8723	·9*8778	·9*8832	948882	·9*8931	94 8978	95 0226	950655	95 1066
4'3	·9³ 1460	·95 1837	-912199	95 2545	·9° 2876	95 3193	·95 3497	·95 3788	·95 4066	95 4332
4.4	-91 4587	·9 ^s 4831	-95 5065	·9 ⁵ 5288	·95 5502	·9 ⁵ 5706	-95 5902	·95 6089	-956268	·95 6439
4.5	-9\$ 6602	-95 6759	-93 6908	-95 7051	95 7187	95 7318	95 7442	95 7561	95 7675	95 7784
4.6	·95 7888	95 7987	-95 8081	958172	95 8258	95 8340	958419	95 8494	-958566	95 8634
4.7	-9\$ 8699	9\$ 8761	95 8821	·95 8877	·95 8931	-95 8983	960320	-960789	961235	1991 96.
4.8	-96 2067	·96 2453	-96 2822	963173	96 3508	96 3827	964131	96 4420	964696	964958
4-9	-96 5208	·96 5446	96 5673	96 5889	-96 6094	·966289	·966475	-96652	-966821	·966981

Example: $\Phi(3.57) = .938215 = 0.9998215$.