
Solutions to 4F10 Pattern Processing, 2016

1. Bayes’ Decision rule and generative models

(a) Bayes decision rule states that you should pick the class with the greatest posterior

P (ω1|x)

P (ω2|x)

ω1
>
<
ω2

1

For a generative model this becomes

p(x|ω1)P (ω1)

p(x|ω2)P (ω2)

ω1
>
<
ω2

1

[10%]

(b)(i) A point that lies on the decision boundary satisfies

log(p(x;µ1,Σ)) + log(P (ω1)) = log(p(x;µ2,Σ)) + log(P (ω2))

where

µ1 =

 µ11

...
µd1

 µ2 =

 µ12

...
µd2

 Σ = diag


 σ2

...
σ2




Substituting in the expressions for the covariance and priors yields

2(µ2 − µ1)′Σ−1x+ µ′1Σ
−1µ1 − µ′2Σ

−1µ2 = 0

[20%]

(b)(ii) Simplest solution is to draw a sketch indicates the distances in standard
deviations. This is acceptable as a solution.

The decision boundary in (b) defines the two regions. For this form of distribution the
posterior will only be a function of the perpendicular distance from the decision boundary
measured in standard deviations. First the space is transformed so that all values are
normalised by the standard deviation so

a = µ1/σ, b = µ2/σ

Projecting the distribution for class along this line

N
(
x; (b− a)

′
a/K, 1

)
where K2 = ||b − a||2. Perpendicular to this direction will just integrate out to 1 for all
positions.

The decision boundary is the projection of the point half way between the means onto this
line. This projection point is

a = (a + b)′(b− a)/2K

Considering the first element of the probability of error∫
R2

p(x|ω1)P (ω1)dx =
1

2

∫ ∞
a

N
(
x; (µ2 − µ1)

′
µ1/K; 1

)
dx

1



Offsetting the mean of the integral to 0 yields the required form∫
R2

p(x|ω1)P (ω1)dx =
1

2

∫ ∞
a

N (x; 0; 1) dx

where a is now

a =
1

2K
(b− a)′(a + b)− 1

K
(b− a)

′
a

=
1

2K
(a− b)′(a− b)

=
1

2

√
(a− b)′(a− b)

Since the probability of error for the second expression will be the same this is the value of
c. By symmetry the required answer is −a. So the final solution is

c = − 1

σ

√
(µ1 − µ2)′(µ1 − µ2)

[30%]

(c) (i) To get the probability of error using 2d sensors requires computing a new value for c,
c2 (from above). The reduction in the probability of error is

∆Pe =

∫ c

−∞
N (z; 0, 1)dz −

∫ c2

−∞
N (z; 0, 1)dz

Here

c2 = − 1

σ

√
(µ3 − µ4)′(µ3 − µ4)

where

µ3 =

 µ11

...
µ1(2d)

 µ4 =

 µ21

...
µ2(2d)


The distance can only increase, so the probability of error can only go down, or remain the
same. [15%]

(c)(ii) To get the optimal subset, need to find the subset of sensors that has the greatest
distance between the means. So simply rank order the sensors according to µs1 − µs2 and
select the top k. [15%]

(c)(iii) If the number of sensors increases so the number of model parameters to train will
increase. This will result in generalisation problems. The performance on the training data
will improve (consistent with the analysis). However, the performance on the held-out test
data, which is what is of interest for practical systems, will not necessarily continue to
improve which means that rather than the performance. There is also an increase in the
computational cost as the number of sensors increases. [10%]

Comments This question examined Bayes’ decision rule and the associated probability of
errors. A number of candidates got confused between scalar and vector values, occasionally
swapping between the two with no comments.
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2. Gaussian Mixture Models

(a) Log-likelihood of the training data is

log(p(x1, . . . , xN |θ)) =

N∑
i=1

log

(
M∑
m=1

cmN (xi;µm,Σm)

)
[10%]

(b)(i) Substituting in the expression for the likelihood to the auxiliary function

Q(θ, θ̂) =

n∑
i=1

M∑
m=1

P (ωm|xi,θ) log (N (xi;µm,Σm))

Differentiate this with respect to µq gives

∂Q(θ, θ̂)

∂µ̂q
=

n∑
i=1

P (ωq|xi,θ)
[
Σ̂
−1
q (xi − µ̂q)

]
Equating to zero (ans setting variable to m) gives

µ̂m =

∑N
i=1 P (ωm|xi,θ)xi∑N
i=1 P (ωm|xi,θ)

[25%]

(b)(ii) As the covariance matrix is diagonal, possible to write auxiliary function as

Q(θ, θ̂) =

n∑
i=1

M∑
m=1

P (ωm|xi,θ)

d∑
j=1

(
− log(

√
2πσ̂)− 1

2

(xij − µ̂mj)2

σ̂2
j

)
Differentiating this wrt to σ̂j yields

n∑
i=1

M∑
m=1

P (ωm|xi,θ)

(
− 1

σ̂j
+

(xij − µ̂mj)2

σ̂3
j

)
Equating to zero yields

σ̂2
j =

∑n
i=1

∑M
m=1 P (ωm|xi,θ)(xij − µ̂mj)2∑n
i=1

∑M
m=1 P (ωm|xi,θ)

[20%]

(c)(i) As the covariance matrix is diagonal, possible to write auxiliary function as

Q(θ, θ̂) =

n∑
i=1

M∑
m=1

P (ωm|xi,θ)

d∑
j=1

(
− log(

√
2πâmσ̂j)−

1

2

(xij − µ̂j)2

âmσ̂2
j

)
Differentiating wrt to am yields

n∑
i=1

P (ωm|xi,θ)

d∑
j=1

(
− 1

2âm
+

1

2

(xij − µ̂j)2

â2mσ̂
2
j

)
Equating to zero yields

âm =

∑n
i=1 P (ωm|xi,θ)

∑d
j=1(xij − µ̂j)2/σ̂j

d
∑n
i=1 P (ωm|xi,θ)

Unfortunately âm is a function of σ̂. It is therefore necessary to interleave the updates - this
is a GEM update (not discussed in lectures). [30%]

(c)(ii) Discussion should include:
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• model in (b) allows multi-modal data to be modelled, (c) is unimodal;

• model in (b) allows non-symmetric data to be modelled, (c) is symmetric;

• (c) is a method to model symmetric data that is non-Gaussian efficiently;

• (c) has significantly fewer parameters (depending on d);

• computational contrast (possible to efficiently compute tied variance systems.
[15%]

Comments A question examining the attributes of Gaussian mixture models and parameter
estimation. This was the most popular question on the exam paper. The candidates showed
a good knowledge of estimating the mean parameters using Expectation-Maximisation. A
number of candidates were unable to correctly estimate the variance parameters, often not
taking advantage of the fact that the covariance matrix was diagonal.
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3. Parameter Optimisation

(a)(i) The values are

b = ∇E(θ)|θ(τ)

A = ∇2E(θ)
∣∣
θ(τ)

the gradient and the Hessian respectively at the current model parameters. [15%]

(a)(ii) Letting

∆θ(τ) = (θ − θ(τ))

gives the following differential expression

∂

∂∆θ(τ)
E(θ) = b + A∆θ(τ))

Equating this to zero gives

∆θ(τ) = −A−1b

Thus the value is given by

θ̂ = θ(τ) −A−1b

[25%]

(b) Writing out the quadratic form for a single dimension yields (ignoring the subscript i)

E(θ) ≈ E(θ(τ)) + ∆θb+ ∆θ2a/2

At the new update value require that

g(τ+1) = 0

g(τ) = b

g(τ−1) = b−∆θ(τ−1)a

From part a(i) the update is given by −b/a. Solving these three equations yields the update
rule (details of derivation not given). [35%]

(c) In (a) it is necessary to calculate of the Hessian. For large numbers of parameters this
may not be practical (it’s a square matrix). It may also not be of full rank hence there can
be issues with the inversion. It can also head off towards a maximum as well. In contrast
for (b) no need to invert compute Hessian. However each dimension is assumed independent
in the Hessian (diagonal approximation). This may be poor.

There is also the need to consider the computational cost of accumulating the Hessian
statistics and those of the gradients. Possible to relate optimisation to finite difference
second-order approximation for the diagonal elements of the Hessian. [25%]

Comments This questions examined the students’ knowledge of second order optimisation
approaches. A well answered question with the candidates showing a good understanding of
second-order approaches and approximation approaches.
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4. Generalisation for Neural Networks

(a)(i) The output of the softmax can be interpreted as a probability. The training criterion
described is the negative cross-entropy criterion where the network (with the 1-of-K coding)
maximises the probability of the correct label. [15%]

(a)(ii) Find derivative (only final answer given here)

∂L(λ)

∂wj
=

n∑
i=1

tij

(
xi −

exp(w′jxi)∑K
k=1 exp(w′kxi)

xi

)
−
∑
k 6=j

n∑
i=1

tik

(
exp(w′jxi)∑K
l=1 exp(w′lxi)

xi

)

This can be used within a standard gradient ascent process. Note the negative cross-entropy
term needs to be maximised. Now

w
(n)
j = w

(n−1)
j + η

∂L(λ)

∂wj

∣∣∣∣
λ(n−1)

[30%]

(b)(i) The negative cross-entropy is being maximised. The regularisation term penalises
large weight values, provided that a is positive, and attempts to ensure that the weights are
small. This prevents extreme weight values, improving regularisation. As a increase so the
system is encouraged to have smaller values for the weights. [15%]

(b)(ii) This expression is identical to (a)(ii), other than the additional term. Thus

∂F(λ)

∂wj
=
∂L(λ)

∂wj
− 2awj

[15%]

(c)(i) The number of parameters in the original system is d×K. Introducing a intermediate
linear layers results in d× b+ b×K parameters. The total number of model parameters will
decrease if

b <
d×K
d+K

By decreasing the number of model parameters, generalisation may improve, though the
power of the network may be decreased. [15%]

(c)(ii) Though this is a multi-layer perceptron, the linear activation function means that
EBP is not required. As it is possible to write

W = W1 ×W2

[10%]

Comments This question was based on neural network training and generalisation. This
was the least popular question. The performance on this question was disappointing. Few
candidates understood how an additional layer could reduce the number of model parameters.
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5. Support Vector Machines and Kernels

(a) The training criterion for the perceptron algorithm is the sum of the perpendicular
distance from the decision boundary of all misclassified points. There is no unique solution
to this cost function. For the SVM classifier the cost function is to maximum the margin,
i.e.

max
w,b

min {||x− xi||; 〈w,x〉+ b = 0, i = 1, . . . ,m}

This has the dual form which required minimising

min
w,b

τ(w) =
1

2
||w||2

subject to

yi (〈w,xi〉+ b) ≥ 1

for all i = 1, . . . ,m.

When the data is not linearly separable slack variables must be introduced. The soft-margin
classifier is obtained by minimising

τ(w, ξ) =
1

2
||w||2 + C

m∑
i=1

ξi

subject to

yi (〈w,xi〉+ b) ≥ 1− ξi
ξi ≥ 0

[25%]

(b) Kernels map from the input-space to a higher dimensional feature-space. A linear classi-
fier is then built in this feature space. This results in a non-linear decision boundary in the
original feature space. The general form for the polynomial kernel is

k(xi,xj) = (xi.xj + 1)
d

[15%]

(c)(i) For the in-homogeneous polynomial kernel the feature-space has the form (others are
possible, but this is the most informative)

Φ(x) =
[
a0 a1x a2x

2 . . . aNx
N
]′

where the values of a0, . . . , aN are determined by the order of the polynomial. There are
thus two main differences

(a) the kernel operates on the exponential of the input-space

(b) there are no scaling factors - depending on the metric used this may or not affect the
decision boundary generated.

[20%]

(c)(ii) The kernel function is found from noting that the dot product is a geometric progres-
sion

k(xi, xj) = 1 +

N∑
r=1

exp(r(xi + xj))

=
1− e(N+1)(xi+xj)

1− e(xi+xj)
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[25%]

(d) The kernelised version of the rule is

gi(x) =

m∑
i=1

yiαik(x, xi) + b

Once the number of support vectors are known then the computational cost is independent of
the number of training samples and N . The cost scales linearly with the number of support
vectors. It is also necessary to consider the cost of the kernel calculation. This scales linearly
with the dimension of the observations. [15%]

Comments This question examined the candidates knowledge of kernels and the result-
ing feature space. A well answered question. The main mistakes made were comparing
inhomogeneous polynomial kernels and the form given in the question.
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