
4F10 Deep Learning and Structured Data, 2021

1. EM algorithm and mixture models

(a) It is necessary to marginalise out over the latent variables

log p(X;µ,Σ,π) = log

[∑
Z

p(X,Z;µ,Σ,π)

]

= log

[∑
Z

(
N∏
n=1

M∏
m=1

π1(zn=m)
m N (xn;µm,Σm)1(zn=m)

)]

=
N∑
n=1

log

[
M∑
m=1

πmN (xn;µm,Σm)

]
.

[20%]

(b) i. The auxiliary function is given by

Q(π(k),π(k+1)) =
∑
Z

p(Z|X;µ,Σ,π(k)) log p(X,Z;µ,Σ,π(k+1))

=
∑
Z

p(Z|X;µ,Σ,π(k))

N∑
n=1

M∑
m=1

[
log
(
π(k+1)
m

)1(zn=m)
+ logN (xn;µm,Σm)1(zn=m)

]
=

N∑
n=1

M∑
m=1

p(zn = m|X;µ,Σ,π(k)) log π(k+1)
m + constant .

[20%]

ii. The Lagrangian is given by

L(π(k+1), λ) = Q(θ(k),θ(k+1)) + λ

(
M∑
m=1

π(k+1)
m − 1

)

=
N∑
n=1

M∑
m=1

P (zn = m|X;µ,Σ,π(k)) log π(k+1)
m + constant +

λ

(
M∑
m=1

π(k+1)
m − 1

)
.

Differentiating w.r.t. π(k+1) and λ yields for π
(k+1)
m

N∑
n=1

P (zn = m|X;µ,Σ,π(k))

π
(k+1)
m

+ λ = 0

1

M∑
m=1

π(k+1)
m − 1 = 0

Solving these two equations yields the update formula

π(k+1)
m =

1

N

N∑
n=1

p(zn = m|X;µ,Σ,π(k)) .

[20%]

(c) i. We have to sum out Z and integrate X (the unobserved variables) to obtain
the log-likelihood. As sn is a binary (observed) variable it can be used to
select whether xn was above or below the threshold. Thus

log p(S;µ,Σ,π, t) = log
∑
Z

∫
· · ·
∫
p(X,Z,S;µ,Σ,π, t) dx1 · · · dxN

=
N∑
n=1

log

[
M∑
m=1

πm

∫ ∞
−∞
N (xn;µm, σ

2
m)s1(xn≥t)

n (1− sn)1(xn<t) dxn

]

=
N∑
n=1

(1− sn) log

[
M∑
m=1

πm

∫ t

−∞
N (xn;µm, σ

2
m) dxn

]
+

N∑
n=1

sn log

[
M∑
m=1

πm

∫ ∞
t

N (xn;µm, σ
2
m) dxn

]

=
N∑
n=1

(1− sn) log

[
M∑
m=1

πmΦm(t)

]
+

N∑
n=1

sn log

[
M∑
m=1

πmΦm(t)

]
.

[20%]

ii. Looking at the form of the answer in part (c)(i) it can be seen that this is
still in the form of a mixture model where there are two components, one
for sn = 0 and the other sn = 1, where the component priors between the
two mixture models. Thus the form of EM will again use the same form
of latent variable, P (zn|xn,θ(k)). This is in fact a simpler model as, given
the mean and variances, component priors are computed that as closely as
possible reflect the fraction of samples above, or below, the threshold.

[20%]

Comments This question examined Gaussian Mixture Models and the use of the
EM algorithm. This was the least popular question and a number of candidates

2

submitted poor answers. It was disappointing that the standard form of the log-
likelihood of the GMM could not be derived by some candidates using the expression
provided. The final part of the question was poorly done, with few candidates being
able to derive the appropriate form for the log-likelihood.

3

2. Bayes’ decision rule, generative and discriminative models and expected loss

(a) For both decision rules it is assumed that the posterior that comes from the
model is “correct”.

i. Assigning test sample x? to class ωj, the loss can be expressed as

L(x?, ωj) =
∑
k 6=j

P (ωk|x?)

= 1− P (ωj|x?)

The decision rule then becomes for the generative models

i? = arg max
j
{P (ωj|x)}

= arg max
j

{
p(x?|ωj)P (ωj)∑K
k=1 p(x

?|ωk)P (ωk)

}
= arg max

j
{p(x?|ωj)P (ωj)}

[15%]

ii. The loss now depends on the correct class. For the decision rule assume that
the posterior from the generative model is the true posterior. Assigning test
sample x? to class ωj, the loss can be expressed as

L(x?, ωj) =
∑
k 6=j

lkP (ωk|x?)

The decision rule now becomes

i? = arg min
j

{∑
k 6=j

lkP (ωk|x)

}

= arg min
j

{∑
k 6=j

lk
p(x?|ωk)P (ωk)∑K

m=1 p(x
?|ωm)P (ωm)

}

= arg min
j

{∑
k 6=j

lkP (x?|ωk)P (ωk)

}
This can also be expressed

i? = arg min
j

{∑
k

lkP (x?|ωk)P (ωk)− ljP (x?|ωj)P (ωj)

}
= arg max

j
{ljP (x?|ωj)P (ωj)}

as the summation over all classess does not depend on the class being se-
lected. [15%]

4

(b) The expected loss is the probability that x falls in Ωk and the label from ω 6= ωk
summed over all classes.

L =
K∑
k=1

∫
Ωk

∑
i 6=k

liP (ωi|x)p(x)dx

=
K∑
k=1

∫
Ωk

∑
i 6=k

lip(x, ωi)dx

=
K∑
k=1

∫
Ωk

∑
i 6=k

lip(x|ωi)P (ωi)dx

[15%]

(c) i. The i-th output oi of the softmax function for K inputs a1, . . . , aK is

oi =
exp(ai)∑K
k=1 exp(ak)

. (1)

The class conditional probabilities are obtained when ak = log(P (ωk)p(x|ωk)).
Since

p(x|ωk) =
D∏
d=1

N (xd|µkd skd) ,

we, therefore, have that

ak = log(P (ωk) +
D∑
d=1

[
− 1

2skd
(xd − µkd)2 − 1

2
log(2πskd)

]

= log(P (ωk)−
D∑
d=1

[
1

2
log(2πskd) +

(µkd)
2

2skd
+

1

2skd
x2
d −

µkd
skd
xd

]
= ck + xTAkx + xTbk ,

where ck = log(P (ωk)−
∑D

d=1

[
1
2

log(2πskd) +
(µkd)2

2skd

]
, Ak = −diag(0.5/sk1, . . . , 0.5/s

k
D)

and bk = (µk1/s
k
1, . . . , µ

k
D/s

k
D)T. The last line in the equation above is a

quadratic function in x. [30%]

ii. If maximum likelihood estimation is used then there are closed form solu-
tions for the class-conditional probability distributions (simple multivariate
Gaussian estimation) and the priors. This is simple, but assumes that the
Gaussian distributions are an accurate representation of the conditional
distributions, and the priors are well estimated.

5

From the previous part the posterior of the class can be expressed in terms
of a softmax and parameters ck,Ak,bk. This can be done using gradient
descent, but does not assume that the model parameters are correct. There
are the standard problems with gradient descent: learning rates, local min-
ima.
A good answer will also give the modified version of part (b) for the training
data fovided

L =
K∑
k=1

∫
Ωk

∑
i 6=k

liP (ωi|x)p(x)dx

≈ 1

N

K∑
k=1

N∑
n=1

∑
i 6=yn

liP (ωi|x(k)
n)

Various answers acceptable provided they have been thought through [25%]

Comments This questions examined decision boundaries and Bayes’ decision rule.
The question was generally well answered with candidates showing a good under-
standing of how different losses impact the form of decision rule. The answers to the
last part of this question were disappointing with many candidates not discussing the
simplicity of simply estimating parameters of a multivariate Gaussian versus directly
minimising the expected loss.

6

3. Deep Learning and Sequence models

(a) Overall network structure. There is a sequence of d-dimensional vectors. This
will be quite long (100’s) since we are told that the input is a spoken sentence
and there is a new vector every 10 ms. There needs to be a single output ob-
tained from the model to obtain the overall classification i.e. the variable length
sequence needs to be mapped to a fixed length vector. A standard network
configuration would include:

• final output needs to 5-dimensional where each output is associated with
one of the emotion classes;

• a soft-max activation function should be used for the last layer of the net-
work so it has the form of posterior class distribution

• Input would be fed in one frame at a time into the recurrent model

• The recurrent units are defined by

ht = fh
(
Wf

hxt + Wr
hht−1 + bh

)
where ht is the history vector at time t and the two history weight matrices
are Wf

h forward, Wr
h recursion and xt is the input vector . Here fh(·) is the

recurrent unit activation function.

• There could be a fully connected layer following the recurrent layer.

The overall output must be formed from a fixed dimension vector. This could
be done by forming an average, or self-attention, of the history vector outputs
(or a further layer on top of this) and then passing this to the softmax or from
taking the final history vector output. In this case the average or self-attention
is to be preferred since the final value will depend too much on the end of the
spoken sentence (& the sentence has 100’s of input vectors). [30%]

(b) i. Sketches of the two activation functions are:

0 1

α

Need to compute the first and second moments. First moment given by∫ ∞
−∞

φ(x)p(x)dx = α

∫ ∞
0

xp(x)dx

It is possible to show that when p(x) = N (x; 0, σ2)∫ ∞
0

xp(x)dx =
σ

2

√
2

π

7

Hence ∫ ∞
−∞

φ(x)p(x)dx = α
σ

2

√
2

π
= ασ

√
1

2π

and the second moment∫ ∞
−∞

(φ(x))2p(x)dx =

∫ ∞
0

α2x2p(x)dx = α2σ2/2

So the total variance on the output is

σ̂2 = α2σ2/2− α2 σ
2

2π
=
α2σ2

2π
(π − 1)

[20%]

ii. The simplest approach is to ensure that the output variance matches the
input variances for the initialisation (as discussed in lectures). This function
has an added complexity as the mean is non-zero. If the network is deep
this could result in a large offset for some layers so a also needs to be dealt
with. Any reasonable, well motivated approach will be accepted.
There are assumed to be N nodes for the hidden layer. Each of the output
is assumed to be (approximately independent). Assuming that the input to
the previous time instance is approximately Gaussian distributed zero mean
variance σ2, then interested in the z = wTx + b. Assuming all independent
then

E
[
wTx + b

]
= E [w]T E [x] + E [b]

setting both the means of w and b to zero assures a zero mean. set b = 0.
For the variance, noting all elements independent (non-bold are elements of
the vector)

E
[
(wTx)2

]
= NE

[
w2
]
E
[
x2
]

= Nσ2
w

α2σ2

2

To set this to be σ2

wi ∼ N
(

0,
2

Nα2

)
[20%]

iii. The form given in (2) is expected to be more sensitive to initialisation, as
there is an upper limit floor on the activation function. There are thus two
saturation regions, compared to a single one in the ReLU. [15%]

8

(c) The simplest approach is to append the noise vector to each of the elements of
the sequence. So the system is now trained and evaluated using

x̃t =

[
xt
n

]
This allows the network to implicitly remove the noise from each of the speech
and noise samples xt. Note any sensible form is acceptable. [15%]

Comments This questions examined the students’ knowledge of deep learning for
sequence data. Many candidates showed a good knowledge of the deep-learning
approaches discussed in the course, Only a few students missed the importance of
generating a fixed length representation for the final classification layer from the
sequence of observations.

9

4. Support vector machines, margin, kernels

(a) The margin of a classifier is the distance from the classifier’s decision boundary
to the nearest data point. Classifiers with large margin work very well empir-
ically, have theoretical results supporting them and are expected to be more
robust when the amount of training data is limited. [10%]

(b) i. The squared Euclidean distance (SED) between x and x′ can be expressed
in terms of dot products as follows:

SED = (x− x′)T(x− x′) = xTx + (x′)Tx′ − 2(x′)Tx .

[15%]

ii. We can use the kernel k to write the squared Euclidean distance in the
non-linear feature space given by k as follows:

SEDk = k(x,x) + k(x′,x′)− 2k(x′,x) .

[15%]

iii. The nearest-neighbour classifier based on k will outperform the original one
when the feature space induced by k has the property that data points from
different classes are farther away, but data points from the same class are
closer to each other. [15%]

(c) i. The magnitude of the margin is

wT(x+ − x−)

2
√

wTw
=

(wTx+ + b−wTx− − b)
2
√

wTw
=

1√
wTw

.

[15%]

ii. Maximizing 1/
√

wTw and minimizing
√

wTw is equivalent since 1/x is a
monotonically decreasing function. Minimizing

√
wTw and 1

2
wTw is again

equivalent because
√
x and 1/2x are monotonically increasing functions. [10%]

iii. Since at the solution, w =
∑N

n=1 antnxn, we can re-write the dual objective
as

L̃ =
N∑
n=1

an −
1

2
wTw .

At the solution, this should be equal to the original objective, the constraints
are all satisfied

L =
1

2
wTw

In particular, since L = L̃, after rearranging, we obtain

1√
wTw

= 1/

√√√√ N∑
n=1

an

which proves the result since M = 1√
wTw

. [20%]

10

Comments This question examined the use of kernels and Support Vector Machine
(SVM) training. This was the most popular question and was well answered A
number of candidates assumed that the decision boundaries for nearest neighbour
classifiers were linear, but the SVM answers were generally good.

11

