
4F10 Deep Learning and Structured Data, 2023

1. Expectation Maximisation and Gaussian Mixture Models

(a) Log-likelihood of the training data is

log(p(x1, . . . , xN |θ)) =
N∑
i=1

log

∑
θ∈Θ

(
n∏
i=1

aθi−1θi

)
M∑
m=1

cmN (xi;µm,Σm)


=

N∑
i=1

log

(
M∑
m=1

cmN (xi;µm,Σm)

)

Acceptable to say no additional information. Possible to also say the only additional
information that the HMM can model is a minimum duration by having left-right
topology. [15%]

(b)(i) Substituting in the expression for the likelihood to the auxiliary function

Q(θ, θ̂) =
n∑
i=1

J∑
j=1

M∑
m=1

P (sj, ωm|xi,θ) log (N (xi;µm,Σm))

Differentiate this with respect to µq gives

∂Q(θ, θ̂)

∂µ̂q
=

n∑
i=1

J∑
j=1

P (sj, ωq|xi,θ)
[
Σ̂
−1
q (xi − µ̂q)

]
Equating to zero (and setting variable to m) gives

µ̂m =

∑N
i=1

∑J
j=1 P (sj, ωm|xi,θ)xi∑N

i=1

∑J
j=1 P (sj, ωm|xi,θ)

This can be further simplified by writing

P (ωm|xi,θ) =
J∑
j=1

P (sj, ωm|xi,θ)

This form is used in the following equations. [20%]

(b)(ii) As the covariance matrix is diagonal, possible to write auxiliary function as

Q(θ, θ̂) =
n∑
i=1

M∑
m=1

P (ωm|xi,θ)
d∑
j=1

(
− log(

√
2πσ̂)− 1

2

(xij − µ̂mj)2

σ̂2
j

)
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Differentiating this wrt to σ̂j yields

n∑
i=1

M∑
m=1

P (ωm|xi,θ)

(
− 1

σ̂j
+

(xij − µ̂mj)2

σ̂3
j

)
Equating to zero yields

σ̂2
j =

∑n
i=1

∑M
m=1 P (ωm|xi,θ)(xij − µ̂mj)2∑n
i=1

∑M
m=1 P (ωm|xi,θ)

[20%]

(c)(i) As the covariance matrix is diagonal, possible to write auxiliary function as

Q(θ, θ̂) =
n∑
i=1

M∑
m=1

P (ωm|xi,θ)
d∑
j=1

(
− log(

√
2πα̂mσ̂j)−

1

2

(xij − µ̂j)2

α̂mσ̂2
j

)
Differentiating wrt to am yields

n∑
i=1

P (ωm|xi,θ)
d∑
j=1

(
− 1

2α̂m
+

1

2

(xij − µ̂j)2

α̂2
mσ̂

2
j

)
Equating to zero yields

α̂m =

∑n
i=1 P (ωm|xi,θ)

∑d
j=1(xij − µ̂j)2/σ̂j

d
∑n

i=1 P (ωm|xi,θ)

Unfortunately α̂m is a function of σ̂. It is therefore necessary to interleave the updates
- this is a GEM update (not discussed in lectures). [30%]

(c)(ii) Discussion should include:

• model in (b) allows multi-modal data to be modelled, (c) is unimodal;

• model in (b) allows non-symmetric data to be modelled, (c) is symmetric;

• (c) is a method to model symmetric data that is non-Gaussian efficiently;

• (c) has significantly fewer parameters (depending on d);

• computational contrast (possible to efficiently compute tied variance systems).
[15%]
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2. Deep Learning and Sequence models

(a)(i) The basic steps that need to be described are:

i. take a 1-of-K encoding of the French words and embed them into embedding
h1, . . . ,hL. Any form of (reasonable) embedding structure is acceptable;

ii. apply an attention mechanism over the input sequence

h =
L∑
i=1

αihi

a self attention mechanism is used, for example

αi =
1

Z
exp

(
hT
i Ahi

)
where A is a trainable matrix.

iii. a classifier is then put on the output, The simplest form is

P (ωi|ωf
1:L) =

exp(wT
i h + bi)∑K

j=1 exp(wT
j h + bj)

where wi is the weight vector associated with class ωi and bi the bias. [25%]

(a)(ii) The standard training criterion is cross-entropy

L(θ) =
N∑
i=1

K∑
k=1

δ(ωk, ω
(i))P (ωk|ωf(i)

1:L )

[15%]

(b)(i) Given the encoded French word sequence, h1, . . . ,hL the following processes
should be described

i. encode the back-history of generated German words to predict the i-th word

ω̂g
1:i−1 → hg

i

any reasonable form of encoding is acceptable.

ii. compute the attention to predict the i-th word

ci =
L∑
j=1

αjhj; αj =
1

Z
exp

(
hgT
i Ahj

)
iii. combine the context information with the back-history

P (ωk|ω̂g
1:i−1, ω

f
1:L) =

exp(wT
k ĥi + bi)∑K

j=1 exp(wT
j ĥi + bj)

where ĥi = [cT
i ,h

gT
i ]T, and ωk is a word from the German vocabulary.
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iv. select the most probable class from P (ωk|ω̂g
1:i−1, ω

f
1:L) and use that as ω̂g

i . [40%]

(b)(ii) The simplest approach is to use cross-entropy on the output

L(θ) =
N∑
i=1

J∑
j=1

V∑
k=1

δ(ωk, ω
g(i)
j )P (ωk|ωg(i)

1:j−1, ω
f(i)
1:L )

where V is the size of the German vocabulary. This is the standard teacher-
forcing approach. The limitation is that there is a mismatch at inference time
between the history used in training, the reference, and hypothesised history.
The advantage of the approach is that the updates can all be done in parallel
compared to using hypothesised histories that must be generated in an auto-
regressive fashion. [20%]
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3. Support vector machines, margin, kernels

(a) A support vector will have a non-zero Lagrange multiplier in the solution to the
SVM dual problem. In a hard margin SVM, it is also one of the data points that
is closest to the classifier’s decision boundary and the output of the classifier at
the support vector times the class label will be equal to 1. If you remove all data
points except the support vectors, the resulting hard margin SVM classifier will
be the same. [15%]

(b) i. The distance is given by

wTφ(x)

||w||
=

4√
1 + 4 + 4 + 1

=
4√
10
≈ 1.27 . (1)

[15%]

ii. The margin magnitude is

1

||w||
=

1√
10.00

≈ 0.32 . (2)

[15%]

iii. The kernel function is given by

k1(x
′,x) = φ(x′)Tφ(x)

= (x′1)
2(x1)

2 + (x′2)
2(x2)

2 + 2x′1x
′
2x1x2 + 2x′1x1 + 2x′2x2

= (x′1x1)
2 + (x′2x2)

2 + 2x′1x
′
2x1x2 + 2x′1x1 + 2x′2x2

= (x′1x1)
2 + (x′2x2)

2 + 2x′1x
′
2x1x2 + 2x′1x1 + 2x′2x2 + 1− 1

= (x′1x1 + x′2x2)
2 + 2(x′1x1 + x′2x2) + 1− 1

= ((x′)Tx)2 + 2(x′)Tx + 1− 1

= (1 + xTx′)2 − 1 . (3)

[15%]

iv. The original kernel uses an implicit feature space given by polynomials of
degree 2 with no intercept. The Gaussian kernel will be preferred whenever
the true decision border cannot be well described by such polynomials. [15%]

(c) i. The resulting classifier should pass through the point [3, 4]T, so its output
should be zero at this point. The slope of the classifier should be −1. That
is, w should be orthogonal to the vector [1,−1]T. This gives the equations

w1 = w2 , (4)

3w1 + 4w2 + b = 0 , (5)

resulting in
7w1 + b = 0 . (6)
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Furthermore, the output of the classifier at [2, 3]T should be 1:

2w1 + 3w2 + b = 1 , (7)

resulting in
5w1 + b = 1 . (8)

Subtracting (6) from (8) yields

−2w1 = 1→ w1 = w2 = −0.5 . (9)

We can then infer that b = 3.5. [15%]

ii. We compute the output of the classifier at each point:

f(x1 = [1, 4]T)t1 = 1 , (10)

f(x2 = [2, 3]T)t2 = 0.92 , (11)

f(x3 = [4, 5]T)t3 = 0.36 , (12)

f(x4 = [5, 6]T)t4 = 1 . (13)

We, therefore, have that ξ1 = 0, ξ2 = 0.08, ξ3 = 0.64 and ξ4 = 0. From
KKT conditions, we know that µnξn = 0. We, therefore, know that µ2 = 0
and µ3 = 0. We also know that an = C−µn. Therefore, a2 = a3 = C = 0.1.
We also know that

w =
∑

n antnxn = a1[1, 4]T + 0.1[2, 3]T + 0.1[−4,−5]T + a4[−5,−6]T .(14)

Therefore,

w1 = a1 − 5a4 − 0.2 = −0.36 , (15)

w2 = 4a1 − 6a4 − 0.2 = −0.28 , (16)

Subtracting 4 times the first equation from the second one yields

14a4 + 0.6 = 1.16→ a4 = (1.16− 0.6)/14 = 0.04 . (17)

We can then solve for a1 obtaining a1−5×0.04−0.2 = −0.36→ a1 = 0.04.
We then have that µ1 = C−a1 = 0.1−0.04 = 0.06 and µ4 = C−a4 = 0.06. [10%]
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4. Bayes’ Decision Rule and Ensembles

(a) Bayes’ decision rule for a two class problem is

Decide

{
Class ω1 if P (ω1|x) > P (ω2|x);
Class ω2 Otherwise

[10%]

(b)(i) The posterior can be expressed as, noting equal priors,

P (ω1|x?) =
p(x?|ω1)P (ω1)

p(x?|ω1)P (ω1) + p(x?|ω2)P (ω2)

=
1

1 + p(x?|ω2)
p(x?|ω1)

The class-conditional PDFs are Gaussian with equal variances

p(x?|ω2)

p(x?|ω1)
= exp

(
1

α
(µ1 − µ2)

Tx? − 1

2α
(µT

2µ2 − µT
1µ1)

)
This yields

P (ω1|x?) =
1

1 + exp
(
1
α

(µ1 − µ2)
Tx? − 1

2α
(µT

2µ2 − µT
1µ1)

)
[25%]

(b)(ii) We now need to compute, using the expression from b(i)

P (ω1|x?1, . . . ,x?5) =
1

1 +
p(x?

1,...,x?
5|ω2)

p(x?
1,...,x?

5|ω1)

The measurements are independent so that

p(x?1, . . . ,x
?
5|ω2)

p(x?1, . . . ,x
?
5|ω1)

=
5∏
i=1

p(x?i |ω2)

p(x?i |ω1)

=
5∏
i=1

exp

(
1

α
(µ1 − µ2)

Tx?i −
1

2α
(µT

2µ2 − µT
1µ1)

)

= exp

(
1

α
(µ1 − µ2)

T

(
5∑
i=1

x?i

)
− 5

2α
(µT

2µ2 − µT
1µ1)

)

This has the same form as Part b(i). [20%]

(c)(i) In lectures a range of approaches were described for deep ensembles:

• bagging: select random subsets of training data
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• Monte-Carlo Dropout: use dropout in training and generate a ensemble
from different selections of dropout

• random initialisation: use different random initialisation for th training of
the network

Any approach is acceptable. [15%]

(c)(ii) The simplest approach to combine the predictions is to average them thus

P (ω1|x?) =
1

M

M∑
i=1

P (ω1|x?,θ(i))

This assumes that each of the models is approximately a draw from the param-
eter distribution. [10%]

(c)(iii) The simplest approach to classifier the multiple samples is to average the samples
and use this averaged sample in the posterior classifier. Thus

P (ω1|x?1, . . . ,x?5) ≈
1

M

M∑
i=1

P (ω1|x?,θ(i)); x? =
1

5

5∑
i=1

x?i

The limitation of this simple approach is that the individual classifiers were
trained on single samples, not averaged samples. Thus the posteriors that come
out will not necessarily be matched the test condition, and the decision boundary
possibly not optimal. This could be addressed by training on ensembles of
samples. [20%]
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