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EGT3
ENGINEERING TRIPOS PART IIB

Monday 24 April 2023 2 to 3.40

Module 4F10

DEEP LEARNING AND STRUCTURED DATA

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 An M-component Gaussian mixture model (GMM) with diagonal covariance
matrices is to be used as the emission probability associated with the states of a J emitting
state HiddenMarkovModel (HMM). The parameters of the emission distributions for all J
states are constrained to be the same. The feature vector is d-dimensional. A long sequence
of N training vectors, x1, . . . ,xN , is available to estimate the model parameters. The
parameters of the model are to be estimated using Maximum Likelihood (ML) estimation.

(a) Find an expression for the log-likelihood of the training data in terms of the
component priors, c1, . . . , cM , the known HMM transition matrix, A, and the component
parameters. For this model does the use of an HMM give any additional information over
using a GMM? [15%]

(b) Expectation-Maximisation (EM) is to be used to find theGaussian componentmeans.
The auxiliary function for this problem can be expressed as

Q(θ, θ̂) =
N∑

i=1

J∑
j=1

M∑
m=1

P(s j,ωm |xi,θ) log(p(xi |s j,ωm, θ̂))

where θ is the set of all the model parameters and θ̂ the parameters to be estimated.
Constant terms, and terms related to estimating the HMM transition matrix, have been
ignored in this expression.

(i) Show that the update formula for the mean of the m-th component is

µ̂m =

∑N
i=1

∑J
j=1 P(s j,ωm |xi,θ)xi∑N

i=1
∑J

j=1 P(s j,ωm |xi,θ)

Ensure that your notation is clearly defined in the derivation. [20%]

(ii) The diagonal covariancematrices for all components of themodel are restricted
to be the same. Derive an expression to estimate this single covariance matrix Σ. [20%]

(c) The form of the model is now changed so that the means of all the components are
restricted to be the same, µ. Additionally the covariance matrices are scalar multiples of
a single, diagonal, covariance matrix Σ. Thus the mean for component m is µ and the
covariance matrix is αmΣ.

(i) Derive the update formula for the value of αm. Discuss any issues that need
to be considered when estimating αm. [30%]

(ii) Discuss the differences between using this form of model compared to using
the form discussed in Part (b). [15%]
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2 A machine translation system is to be trained to translate from French into German.
Supervised training data is provided for this task, where the German translation for each
French sentence is provided.

(a) Initially the vocabulary of the system is limited so that the system is trained to predict
one of the K possible translated sentences, ω1, . . . ,ωK . Thus for each training example
there is the pair of the French word-sequence and the translated sentence label.

(i) An attention-based architecture is to be used for this task. Briefly discuss a
suitable form of network that can be used. You should include equations to illustrate
the translation of the L-length French word sequence ωf1:L = ω

f
1, . . . ,ω

f
L into the

German sentence label, ωk . [25%]

(ii) Define a suitable training criterion to train the model parameters, justifying
your answer and clearly defining all symbols. [15%]

(b) The system is now extended so that it can handle more general French to German
translations. The training data is now modified to comprise translation pairs of French
word-sequences and the translated Germanword-sequence. An auto-regressive translation
process is to be used where for the German translation ωg1:J = ω

g
1, . . . ,ω

g
J

P(ωg1:J |ω
f
1:L) =

J∏
i=1

P(ωgi |ω
g
1:i−1,ω

f
1:L)

An encoder for the French words is provided so that the word-sequence ωf1, . . . ,ω
f
L is

mapped to embeddings h1, . . . ,hL . An attention-based approach is to be used to propagate
information from the encoded word sequence to the decoder.

(i) Briefly describe how the encoded French word sequence can be used to predict
the i-th translated German word. You should clearly describe, including equations,
how information is propagated from the encoded French word sequence and the
previous i − 1 translated German words, ω̂g1:i−1, and a suitable attention mechanism
that can be used. You should define all symbols in the equations. [40%]

(ii) The model parameters are to be estimated by maximising the probability of
each German word given the correct (from the reference) translation for the previous
words. Give the expression that should be maximised in this case and comment on
the advantages and disadvantages of such an approach. [20%]
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3 (a) Give a definition of support vector in an SVM with a hard margin (i.e. C, the
parameter that controls the trade-off between the slack variable penalty and the margin, is
set to∞). [15%]

(b) A data scientist fits a hard margin SVM classifier to a 2-D dataset using the following
non-linear mapping of the data into a 5-D feature space:

x = [x1, x2]
T → φ(x) = [x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2]
T . (1)

The resulting SVM classifier is f (x) = wTφ(x) + b, with w = [1,2,0,2,1]T and b = 0.

(i) What is the distance of the data point φ(x) = [1,0.5,−2,0.5,1]T to the
classifier’s decision boundary in feature space? [15%]

(ii) What is the magnitude of the margin in feature space for this classifier? [15%]

(iii) Write down the kernel function k1(x,x′) associated with the mapping in (1). [15%]

(iv) Instead of k1(x,x′), the data scientist considers using the Gaussian kernel

k2(x,x′) = exp
{
−

1
2s
(x − x′)T(x − x′)

}
, (2)

where s is tuned using validation data. Assuming that plenty of data is available,
when will this kernel be preferred to the original one? [15%]

(c) The data scientist trains a hard margin linear SVM on a dataset comprising point,
xi, and target, ti, pairs. There are four training pairs with values: x1 = [1,4]T, t1 = +1;
x2 = [2,3]T, t2 = +1; x3 = [4,5]T, t3 = −1; and x4 = [5,6]T, t4 = −1. The points are
shown in Fig. 1.

(i) What is the weight vector w and the bias term b of the resulting classifier?
Hint: the slope of the decision boundary is -1, so w is orthogonal to [1,−1]T [15%]

(ii) The data scientist switches to a soft margin SVM with a linear kernel and
C = 0.1. At the optimal solution, w = [−0.36,−0.28]T and b = 2.48. What are
the associated values for the slack variables, {ξn}

4
n=1, and Lagrange multipliers,

{µn}
4
n=1 and {an}

4
n=1? You should ensure that you clearly define all symbols. [10%]
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Fig. 1
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4 A classifier is to be constructed using Bayes’ decision rule for a binary classification
problem. A d-dimensional observation feature-vector is used. The true feature vector for
classes ω1 and ω2 are always µ1 and µ2 respectively. However, due to the measurement
process there is a significant level of noise on any measurements taken from these feature
vectors. The noise from each measurement is independent of the noise from other
measurements and is known to have zero mean for both classes. The prior probabilities
for the two classes are known to be equal.

(a) State Bayes’ decision rule for binary classification tasks. [10%]

(b) Initially it is assumed that the noise on the measurements is multivariate Gaussian
distributed. Furthermore the covariance matrix for the noise, Σ, is assumed to be a scaled
identity matrix with scaling factor α. A generative model classifier is trained on a large
quantity of supervised training data.

(i) For a test measurement x? derive an expression for the posterior probability
of assigning this measurement to class ω1 for this classifier. You should simplify
the form of your expression where possible. [25%]

(ii) To improve the accuracy of the classifier, measurements for each test sample
are repeated five times, all five samples are known to come from the same class.
The noise for each of these measurements is independent. By considering the
probability of generating all five samples, x?1 , . . . , x

?
5 , from classes ω1 or ω2, derive

an expression for the posterior probability of classω1. Compare the derived posterior
probability to the form derived in Part (b)(i). [20%]

(c) An ensemble of M deep-learning based classifiers is proposed to further improve
the performance. Each classifier is trained to directly predict the posterior probabilities of
the two classes for a test measurement x?, P(ω1 |x

?) and P(ω2 |x
?).

(i) Briefly describe one approach for generating an ensemble of deep classifiers
from the available training data. Discuss any limitations of the approach. [15%]

(ii) How can predictions from the ensemble be combined together to predict the
class posterior for a single measurement x?? You should motivate your answer. [10%]

(iii) If the ensemble now has five measurements to predict the class posterior,
x?1 , . . . , x

?
5 , how can you use these multiple samples with the deep-learning

ensemble? You should clearly motivate your approach and discuss any limitations. [20%]

END OF PAPER
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