
Version JMHL/2

EGT3
ENGINEERING TRIPOS PART IIB

Monday xx April 20xx 2 to 3.40

Module 4F10

CRIB: DEEP LEARNING AND STRUCTURED DATA

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Page 1 of 12



Version JMHL/2

1 Generative and discriminative classifiers

(a) Generative classifiers model the joint probability distribution 𝑃(𝑋,𝑌 ), where 𝑋
represents the input features and 𝑌 the class labels. This involves learning the class-
conditional probability distribution 𝑃(𝑋 |𝑌 ) and the prior class probabilities 𝑃(𝑌 ). Once
these distributions are known, predictions are made using Bayes’ theorem: 𝑃(𝑌 |𝑋) =

𝑃(𝑋 |𝑌 )𝑃(𝑌 )/𝑃(𝑋). They are useful when we need to generate data or handle missing
data, but assumptions about 𝑃(𝑋 |𝑌 ) may not always hold, leading to poor performance.
Examples: Naïve Bayes or Gaussian Mixture Models.
Discriminative classifiers directly model the conditional probability 𝑃(𝑌 |𝑋) or learn
a decision boundary that separates the classes without explicitly modeling 𝑃(𝑋 |𝑌 ) or
𝑃(𝑌 ). These models focus solely on the relationship between inputs and outputs, aiming
to maximize predictive accuracy. They often achieve better classification accuracy as
they focus directly on the decision boundary, but they lack the generative capabilities.
Examples: logistic regression or Support Vector Machines. [15%]

(b) (i) The probability density function for a multivariate Gaussian distribution is

𝑃(𝑥 |𝐶𝑘 ) =
1

(2𝜋)𝑑/2 |Σ |1/2
exp

(
−1

2
(𝑥 − 𝜇𝑘 )𝑇Σ−1(𝑥 − 𝜇𝑘 )

)
,

where 𝑘 ∈ {1, 2} represents the class index. Using Bayes’ theorem, the posterior
probability 𝑃(𝐶𝑘 |𝑥) is proportional to

𝑃(𝐶𝑘 |𝑥) ∝ 𝑃(𝑥 |𝐶𝑘 )𝑃(𝐶𝑘 ).

Taking the logarithm of the posterior ratio ln 𝑃(𝐶1 |𝑥)
𝑃(𝐶2 |𝑥)

, the decision boundary is
determined by

ln 𝑃(𝐶1 |𝑥) − ln 𝑃(𝐶2 |𝑥) = 0.

Substituting the Gaussian densities and simplifying, we find

(𝑥 − 𝜇1)𝑇Σ−1(𝑥 − 𝜇1) − (𝑥 − 𝜇2)𝑇Σ−1(𝑥 − 𝜇2) + 2 ln
𝑃(𝐶1)
𝑃(𝐶2)

= 0.

Expanding and simplifying further yields a linear decision boundary

(𝑥𝑇Σ−1𝜇1 −
1
2
𝜇𝑇1Σ

−1𝜇1) − (𝑥𝑇Σ−1𝜇2 −
1
2
𝜇𝑇2Σ

−1𝜇2) + ln
𝑃(𝐶1)
𝑃(𝐶2)

= 0.

Reorganizing terms, the decision rule becomes

𝑥𝑇Σ−1(𝜇1 − 𝜇2) +
1
2
(𝜇𝑇2Σ

−1𝜇2 − 𝜇𝑇1Σ
−1𝜇1) + ln

𝑃(𝐶1)
𝑃(𝐶2)

= 0.

[15%]

Page 2 of 12 (cont.



Version JMHL/2

(ii) Assuming the true class-conditional distributions are known, the probability
of classification error can be expressed as

𝑃(Error) = 𝑃(𝐶1)
∫
𝑅2
𝑃(𝑥 |𝐶1) 𝑑𝑥 + 𝑃(𝐶2)

∫
𝑅1
𝑃(𝑥 |𝐶2) 𝑑𝑥,

where 𝑅1 and 𝑅2 are the regions assigned to 𝐶1 and 𝐶2, respectively. [15%]

(c) (i) For the logistic regression model, the conditional probability of class𝐶1 given
the input 𝑥 is given by

𝑃(𝐶1 |𝑥) =
1

1 + exp (−𝑤𝑇𝑥 − 𝑏)
.

The probability of class 𝐶2 is

𝑃(𝐶2 |𝑥) = 1 − 𝑃(𝐶1 |𝑥).

Given a dataset {𝑥𝑛, 𝑦𝑛}𝑁𝑛=1, where 𝑦𝑛 ∈ {𝐶1, 𝐶2} represents the class labels, the
likelihood of the dataset is

𝐿 (𝑤, 𝑏) =
𝑁∏
𝑛=1

𝑃(𝐶1 |𝑥𝑛)I[𝑦𝑛=𝐶1]𝑃(𝐶2 |𝑥𝑛)I[𝑦𝑛=𝐶2] ,

where I[·] is the indicator function which takes value 1 when its input is true and
0 otherwise. Taking the logarithm of the likelihood, the log-likelihood function
becomes

ℓ(𝑤, 𝑏) =
𝑁∑︁
𝑛=1

[I[𝑦𝑛 = 𝐶1] ln 𝑃(𝐶1 |𝑥𝑛) + I[𝑦𝑛 = 𝐶2] ln 𝑃(𝐶2 |𝑥𝑛)] .

[15%]

(ii) The decision rule classifies 𝑥 as class 𝐶1 when 𝑃(𝐶1 |𝑥) ≥ 𝜃. The probability
of a false positive is

𝑃(False Positive) = 1 − 𝜃,

and the probability of a false negative is

𝑃(False Negative) = 𝜃.

The optimal threshold satisfies

𝐶𝐹𝑃 · 𝑃(False Positive) = 𝐶𝐹𝑁 · 𝑃(False Negative).

This leads to 𝜃 = 𝐶𝐹𝑃/(𝐶𝐹𝑃 + 𝐶𝐹𝑁 ).
[20%]

Page 3 of 12 (TURN OVER



Version JMHL/2

(d) The likelihood for each unlabeled data point 𝑥𝑈
𝑘

is given by marginalizing over the
class variable:

𝑃(𝑥𝑈
𝑘
) =

2∑︁
𝑘=1

𝑃(𝑥𝑈
𝑘
|𝐶𝑘 )𝑃(𝐶𝑘 ),

where 𝑃(𝑥𝑈
𝑘
|𝐶𝑘 ) is the Gaussian density for class 𝐶𝑘 and 𝑃(𝐶𝑘 ) is the prior probability

for class 𝐶𝑘 . The overall likelihood for the unlabeled dataset is

𝑃(𝑋𝑈) =
𝐾∏
𝑘=1

𝑃(𝑥𝑈
𝑘
).

The total log-likelihood combines the labeled and unlabeled datasets:

ℓ(Θ) =
𝑁∑︁
𝑛=1

ln 𝑃(𝑥𝑛, 𝑦𝑛) +
𝐾∑︁
𝑘=1

ln 𝑃(𝑥𝑈
𝑘
),

where 𝑃(𝑥𝑛, 𝑦𝑛) = 𝑃(𝑥𝑛 |𝑦𝑛)𝑃(𝑦𝑛) (labeled data) and 𝑃(𝑥𝑈
𝑘
) =

∑2
𝑘=1 𝑃(𝑥

𝑈
𝑘
|𝐶𝑘 )𝑃(𝐶𝑘 )

(unlabeled data). This total log-likelihood can be optimised to improve the estimation by
using the unlabeled data.

[20%]

Page 4 of 12



Version JMHL/2

2 Mixture of Gaussians and EM

(a) The joint distribution of 𝑋 and 𝑍 is given by

𝑝(𝑋, 𝑍; 𝜃) =
𝑁∏
𝑛=1

𝑀∏
𝑚=1

[𝜋𝑚N(𝑥𝑛; 𝜇𝑚 , Σ𝑚)] 𝐼 (𝑧𝑛=𝑚) .

The marginal likelihood is obtained by summing over all possible latent variables 𝑍

𝑝(𝑋; 𝜃) =
∑︁
𝑍

𝑝(𝑋, 𝑍; 𝜃).

Taking the logarithm, the marginal log-likelihood becomes

log 𝑝(𝑋; 𝜃) = log
∑︁
𝑍

𝑁∏
𝑛=1

𝑀∏
𝑚=1

[𝜋𝑚N(𝑥𝑛; 𝜇𝑚 , Σ𝑚)] 𝐼 (𝑧𝑛=𝑚)

=

𝑁∑︁
𝑛=1

log

[
𝑀∑︁
𝑚=1

𝜋𝑚N(𝑥𝑛; 𝜇𝑚 , Σ𝑚)
]
.

[20%]

(b) (i) The general auxiliary function is

𝑄(𝜃 (𝑘) , 𝜃 (𝑘+1)) = E
𝑍∼𝑃(𝑍 |𝑋;𝜃 (𝑘))

[
log 𝑝(𝑋, 𝑍; 𝜃 (𝑘+1))

]
.

Substituting 𝑝(𝑋, 𝑍; 𝜃), we have

𝑄(𝜃 (𝑘) , 𝜃 (𝑘+1)) =
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝛾𝑛𝑚

[
log 𝜋𝑚 + logN(𝑥𝑛; 𝜇𝑚 , 𝜎2𝐼)

]
,

where 𝛾𝑛𝑚 = 𝑃(𝑧𝑛 = 𝑚 |𝑥𝑛, 𝜃 (𝑘)) are the responsibilities. Expanding the Gaussian
term, we obtain

logN(𝑥𝑛; 𝜇𝑚 , 𝜎2𝐼) = −𝑑
2

log(2𝜋𝜎2) − 1
2𝜎2 ∥𝑥𝑛 − 𝜇𝑚 ∥

2.

Thus,

𝑄(𝜃 (𝑘) , 𝜃 (𝑘+1)) =
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝛾𝑛𝑚

[
log 𝜋𝑚 − 𝑑

2
log(2𝜋𝜎2) − 1

2𝜎2 ∥𝑥𝑛 − 𝜇𝑚 ∥
2
]
.

[20%]

Page 5 of 12 (TURN OVER



Version JMHL/2

(ii) Maximizing 𝑄 with respect to 𝜇𝑚 leads to

𝜇
(𝑘+1)
𝑚 =

∑𝑁
𝑛=1 𝛾𝑛𝑚𝑥𝑛∑𝑁
𝑛=1 𝛾𝑛𝑚

,

where 𝛾𝑛𝑚 =
𝜋
(𝑘)
𝑚 N(𝑥𝑛;𝜇(𝑘)𝑚 ,𝜎2𝐼)∑𝑀

𝑗=1 𝜋
(𝑘)
𝑗

N(𝑥𝑛;𝜇(𝑘)
𝑗
,𝜎2𝐼)

. [20%]

(c) (i) The joint distribution with binary observations 𝑌 is

𝑝(𝑋, 𝑍,𝑌 ; 𝜃) = 𝑝(𝑌 |𝑋)𝑝(𝑋, 𝑍; 𝜃),

where 𝑝(𝑌 |𝑋) = ∏𝑁
𝑛=1 𝑝(𝑦𝑛 |𝑥𝑛) and 𝑝(𝑦𝑛 |𝑥𝑛) is defined as

𝑝(𝑦𝑛 |𝑥𝑛) =


1, 𝑥𝑛 ∈ 𝑅,
0, 𝑥𝑛 ∉ 𝑅.

[10%]

(ii) The joint distribution 𝑝(𝑌 ; 𝜽) is obtained by summing out the missing 𝑋

variables and their corresponding latent variables 𝑍:

𝑝(𝑌 ; 𝜽) =
𝑁∏
𝑛=1

𝑀∑︁
𝑚=1

𝜋𝑚

[∫
𝑥𝑛∈𝑅

N(𝑥𝑛; 𝜇𝑚 , Σ𝑚) 𝑑𝑥𝑛
] 𝑦𝑛

·[
1 −

∫
𝑥𝑛∈𝑅

N(𝑥𝑛; 𝜇𝑚 , Σ𝑚) 𝑑𝑥𝑛
]1−𝑦𝑛

, (1)

where 𝑦𝑛 = 1 if 𝑥𝑛 ∈ 𝑅, and 𝑦𝑛 = 0 otherwise. Here,
∫
𝑥𝑛∈𝑅N(𝑥𝑛; 𝜇𝑚 , Σ𝑚) 𝑑𝑥𝑛

represents the probability mass that the 𝑚-th Gaussian component assigns to the
region 𝑅. [10%]

(iii) The responsibilities 𝛾𝑛𝑚 , representing 𝑃(𝑧𝑛 = 𝑚 | 𝑦𝑛, 𝜽 (𝑘)), are computed as

𝛾𝑛𝑚 =
𝜋
(𝑘)
𝑚 𝑃(𝑦𝑛 | 𝑧𝑛 = 𝑚, 𝜽 (𝑘))∑𝑀

𝑗=1 𝜋
(𝑘)
𝑗
𝑃(𝑦𝑛 | 𝑧𝑛 = 𝑗 , 𝜽 (𝑘))

, (2)

where 𝑃(𝑦𝑛 | 𝑧𝑛 = 𝑚, 𝜽 (𝑘)) is

𝑃(𝑦𝑛 | 𝑧𝑛 = 𝑚, 𝜽 (𝑘)) =

∫
𝑥𝑛∈𝑅N(𝑥𝑛; 𝜇(𝑘)𝑚 , Σ

(𝑘)
𝑚 ) 𝑑𝑥𝑛, 𝑦𝑛 = 1,

1 −
∫
𝑥𝑛∈𝑅N(𝑥𝑛; 𝜇(𝑘)𝑚 , Σ

(𝑘)
𝑚 ) 𝑑𝑥𝑛, 𝑦𝑛 = 0.

(3)

This explicitly incorporates the observed binary labels 𝑦𝑛 and the region 𝑅 into the
computation of responsibilities. [20%]

Page 6 of 12



Version JMHL/2

3 Support vector machines

(a) A Support Vector Machine (SVM) is a supervised learning model used for binary
classification tasks. It seeks to find the hyperplane that best separates the data into two
classes. The margin is defined as the distance between the hyperplane and the closest
data points, which are known as support vectors. These support vectors are critical as
they determine the position and orientation of the hyperplane. By maximizing the margin,
SVM favours better generalization to unseen data. [15%]

(b) (i) The primal optimization problem is

min
𝑤,𝑏,𝜉

1
2
∥𝑤∥2 + 𝐶

𝑁∑︁
𝑛=1

𝜉𝑛,

subject to
𝑦𝑛 (𝑤⊤𝑥𝑛 + 𝑏) ≥ 1 − 𝜉𝑛, 𝜉𝑛 ≥ 0, 𝑛 = 1, . . . , 𝑁.

The Lagrangian is

𝐿 (𝑤, 𝑏, 𝜉, 𝛼, 𝜇) = 1
2
∥𝑤∥2 +𝐶

𝑁∑︁
𝑛=1

𝜉𝑛 −
𝑁∑︁
𝑛=1

𝛼𝑛
[
𝑦𝑛 (𝑤⊤𝑥𝑛 + 𝑏) − 1 + 𝜉𝑛

]
−

𝑁∑︁
𝑛=1

𝜇𝑛𝜉𝑛,

where 𝛼𝑛 ≥ 0 and 𝜇𝑛 ≥ 0 are Lagrange multipliers. [15%]

(ii) The Karush-Kuhn-Tucker (KKT) conditions are

• 1. Primal feasibility: 𝑦𝑛 (𝑤⊤𝑥𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 and 𝜉𝑛 ≥ 0.

• 2. Dual feasibility: 𝛼𝑛 ≥ 0, 𝜇𝑛 ≥ 0.

• 3. Complementary slackness: 𝛼𝑛
[
𝑦𝑛 (𝑤⊤𝑥𝑛 + 𝑏) − 1 + 𝜉𝑛

]
= 0 and 𝜇𝑛𝜉𝑛 = 0.

• 4. Stationarity:

𝑤 =

𝑁∑︁
𝑛=1

𝛼𝑛𝑦𝑛𝑥𝑛,

𝑁∑︁
𝑛=1

𝛼𝑛𝑦𝑛 = 0, 𝜇𝑛 = 𝐶 − 𝛼𝑛.

Support vectors correspond to data points for which 𝛼𝑛 > 0. [15%]

(c) (i) The classifier’s output is determined as

𝑓 (𝑥) =
𝑁∑︁
𝑛=1

𝛼𝑛𝑦𝑛𝑘 (𝑥, 𝑥𝑛) + 𝑏,

where 𝑏 is derived from the support vectors. The decision boundary is given by
𝑓 (𝑥) = 0.

[15%]

Page 7 of 12 (TURN OVER



Version JMHL/2

(ii) The dual problem is convex because

• 1. The objective function involves quadratic terms and is concave with respect
to 𝛼 (negative definite Hessian).

• 2. The constraints form a convex set.

[20%]

(iii) Given the dataset (𝑥1 = −1, 𝑦1 = +1), (𝑥2 = 0, 𝑦2 = −1), (𝑥3 = 1, 𝑦3 = +1)
with linear kernel 𝑘 (𝑥, 𝑦) = 𝑥𝑦 and 𝐶 = 1, the dual optimization problem is

max
𝛼1,𝛼2,𝛼3

𝑊 (𝛼) =
3∑︁
𝑛=1

𝛼𝑛 −
1
2

3∑︁
𝑛=1

3∑︁
𝑚=1

𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝑘 (𝑥𝑛, 𝑥𝑚),

subject to
3∑︁
𝑛=1

𝛼𝑛𝑦𝑛 = 0, 0 ≤ 𝛼𝑛 ≤ 𝐶, for 𝑛 = 1, 2, 3.

The linear kernel is 𝑘 (𝑥, 𝑦) = 𝑥𝑦. Using the given data points, the kernel matrix 𝐾
is

𝐾 =


1 0 −1
0 0 0
−1 0 1

 .
The dual objective function becomes

𝑊 (𝛼) = 𝛼1 + 𝛼2 + 𝛼3 −
1
2

[
𝛼1 𝛼2 𝛼3

] 
1 0 −1
0 0 0
−1 0 1



𝛼1
𝛼2
𝛼3

 .
Simplify the quadratic term,

1
2

3∑︁
𝑛=1

3∑︁
𝑚=1

𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝑘 (𝑥𝑛, 𝑥𝑚) =
1
2

(
𝛼2

1 − 2𝛼1𝛼3 + 𝛼2
3

)
.

Thus, the objective is

𝑊 (𝛼) = 𝛼1 + 𝛼2 + 𝛼3 −
1
2

(
𝛼2

1 − 2𝛼1𝛼3 + 𝛼2
3

)
.

The constraints are

• 1. Equality constraint,

3∑︁
𝑛=1

𝛼𝑛𝑦𝑛 = 0 =⇒ 𝛼1 − 𝛼2 + 𝛼3 = 0.

Page 8 of 12 (cont.



Version JMHL/2

• 2. Box constraints,
0 ≤ 𝛼1, 𝛼2, 𝛼3 ≤ 1.

From the equality constraint,
𝛼2 = 𝛼1 + 𝛼3.

Substitute this into the objective function,

𝑊 (𝛼1, 𝛼3) = 𝛼1 + (𝛼1 + 𝛼3) + 𝛼3 −
1
2

(
𝛼2

1 − 2𝛼1𝛼3 + 𝛼2
3

)
.

Simplify,
𝑊 (𝛼1, 𝛼3) = 2𝛼1 + 2𝛼3 −

1
2

(
𝛼2

1 − 2𝛼1𝛼3 + 𝛼2
3

)
.

We expand and combine terms,

𝑊 (𝛼1, 𝛼3) = 2𝛼1 + 2𝛼3 −
1
2
𝛼2

1 + 𝛼1𝛼3 −
1
2
𝛼2

3 .

To maximize𝑊 (𝛼1, 𝛼3), compute the partial derivatives,
𝜕𝑊

𝜕𝛼1
= 2 − 𝛼1 + 𝛼3,

𝜕𝑊

𝜕𝛼3
= 2 + 𝛼1 − 𝛼3.

Set these derivatives to zero,

2 − 𝛼1 + 𝛼3 = 0, 2 + 𝛼1 − 𝛼3 = 0.

Solve this system of equations,

• 1. From the first equation: 𝛼3 = 𝛼1 − 2.

• 2. Substitute into the second equation:

2 + 𝛼1 − (𝛼1 − 2) = 0 =⇒ 𝛼1 = 1.

• 3. Substitute 𝛼1 = 1 into 𝛼3 = 𝛼1 − 2:

𝛼3 = 1 − 2 = −1.

However, 𝛼3 must satisfy 0 ≤ 𝛼3 ≤ 1, so the optimal solution occurs at the boundary,

𝛼1 = 1, 𝛼3 = 0.

Using the equality constraint 𝛼2 = 𝛼1 + 𝛼3:

𝛼2 = 1 + 0 = 1.

The optimal values of the dual variables are

𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 0.

[20%]

Page 9 of 12 (TURN OVER



Version JMHL/2

4 Transformer neural networks

(a) (i) The output layer should be a softmax layer that maps the output of the final
transformer block to a probability distribution over the French vocabulary. The
output layer involves: 1) a weight matrix of shape (𝑑,𝑉French) and 2) a bias
vector of shape (𝑉French). The total number of parameters in the output layer is
𝑑 ×𝑉French +𝑉French. [10%]

(ii) A. Poistional encodings: they enable the model to consider the order of the
sequence elements during attention computation. Without positional encoding,
the model would treat all input embeddings as a "bag of words" without any
temporal context. Sinusoidal functions are used to encode positions. These
functions allow the model to generalize to unseen sequence lengths because of
their continuous nature.

B. Self-attention: Allows to compute relationships between all words in the
sequence in parallel, including long-range ones, which are crucial for tasks like
translation where word order and context are vital. It helps the model focus on
relevant parts of the input sequence for generating each output word. Computes
attention scores between words by taking dot products between transformed
versions of the input embeddings. These scores are then normalized using
a softmax function to produce attention weights, which determine how much
influence each word has on another. [20%]

(b) (i) The self-attention mechanism performs the following multiplications for a
sequence of length (𝑇 + 𝑇′) with feature dimension 𝑑:

• Value, Key an Query Matrices. Calculating the value, query and key matrices
𝑉 ,𝑄, and 𝐾 involves in each case multiplying an embedding matrix (𝑇 +𝑇′) × 𝑑
with a weight matrix 𝑑 × 𝑑, costing 3(𝑇 + 𝑇′)𝑑2.

• Query-Key Multiplication. Calculating the product of query and key matrices
𝑄𝐾⊤ involves multiplying a (𝑇 + 𝑇′) × 𝑑 matrix with a 𝑑 × (𝑇 + 𝑇′) matrix,
costing (𝑇 + 𝑇′)2𝑑.

• Final Multiplication. Multiplying the attention matrix ((𝑇 + 𝑇′) × (𝑇 + 𝑇′))
with the value matrix 𝑉 ((𝑇 + 𝑇′) × 𝑑) costs (𝑇 + 𝑇′)2𝑑.

The total cost is 2(𝑇 + 𝑇′)2𝑑 + 3(𝑇 + 𝑇′)𝑑2. For long sequences (𝑇 + 𝑇′ ≫ 1), the
quadratic term in 𝑇 + 𝑇′ dominates, posing challenges for scalability.

[20%]

(ii) Multi-head attention extends single-head attention by using multiple attention

Page 10 of 12 (cont.



Version JMHL/2

heads. Each head learns a separate representation by applying attention with
independently trained query, key and value (𝑄, 𝐾 , and 𝑉 ) projections of the
embeddings. The outputs of all heads are linearly combined to produce the final
output. Multiple attention heads allow the model to attend to different parts of the
input sequence simultaneously. This enables the model to capture different types of
relationships simultaneously and provides richer and more versatile representations
of the sequence elements. [15%]

(iii) Masking is applied to the self-attention mechanism to restrict the flow of
information. A causal mask matrix is used to ensure that the attention mechanism
at position 𝑡 only considers embeddings from positions < 𝑡. Mathematically, the
key-query product for future embeddings are set to−∞ before evaluating the softmax
function. For query and key matrices Q and K, we have

Attention-Weights(𝑄, 𝐾) = softmax
(
𝑄𝐾𝑇 + 𝑀

)
,

where 𝑀 is the mask matrix, defined as

𝑀 [𝑖, 𝑗] =


0 if 𝑗 < 𝑖,

−∞ if 𝑗 ≥ 𝑖.

The addition of −∞ ensures that the softmax outputs for future embeddings become
zero, effectively masking them.

[15%]

(c) Comparison and contrast between transformers and RNNs:

• Parallelism: Transformers process all tokens simultaneously, while RNNs require
sequential processing, making transformers faster for long sequences by using GPU
acceleration.

• Sequence Length: Transformers handle long-range dependencies efficiently due
to self-attention, whereas RNNs struggle with vanishing gradients.

• Scalability: Transformers scale better with hardware accelerators, while RNNs are
limited by sequential operations. However, transformers scale worse with sequence
length as their cost is quadratic, while RNNs have a linear cost.

[20%]

END OF PAPER

Page 11 of 12



Version JMHL/2

THIS PAGE IS BLANK

Page 12 of 12


