Version JMHL/2

EGT3
ENGINEERING TRIPOS PART IIB

Monday xx April 20xx 2 to 3.40

Module 4F10
CRIB: DEEP LEARNING AND STRUCTURED DATA

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Page 1 of 12

Version JMHL/2

1 Generative and discriminative classifiers

(a) Generative classifiers model the joint probability distribution P(X,Y), where X
represents the input features and Y the class labels. This involves learning the class-
conditional probability distribution P(X|Y) and the prior class probabilities P(Y). Once
these distributions are known, predictions are made using Bayes’ theorem: P(Y|X) =
P(X|Y)P(Y)/P(X). They are useful when we need to generate data or handle missing
data, but assumptions about P(X|Y) may not always hold, leading to poor performance.
Examples: Naive Bayes or Gaussian Mixture Models.

Discriminative classifiers directly model the conditional probability P(Y|X) or learn
a decision boundary that separates the classes without explicitly modeling P(X|Y) or
P(Y). These models focus solely on the relationship between inputs and outputs, aiming
to maximize predictive accuracy. They often achieve better classification accuracy as
they focus directly on the decision boundary, but they lack the generative capabilities.
Examples: logistic regression or Support Vector Machines.

(b) (1) The probability density function for a multivariate Gaussian distribution is

1 1 _
P(x|Cy) = Wexp —E(X —)2 =),

where k € {1,2} represents the class index. Using Bayes’ theorem, the posterior
probability P(Cy|x) is proportional to

P(Cilx) o< P(x|Cr) P(Cy).

P(Cq|x)

Taking the logarithm of the posterior ratio In PGl

the decision boundary is
determined by

In P(Cy|x) - In P(C5x) = 0.

Substituting the Gaussian densities and simplifying, we find

_ _ P(Cy)
=) = @ =) = (=) -) +21n =0.
P(Cy)
Expanding and simplifying further yields a linear decision boundary
_ 1 _ _ 1 _ P(C))
Tsy-1 Ty-1 Ty-1 Ts—1 1
p) ——ui Z -(x' X — s X 1 =0.
(X = X) — (x M2 = SR o) + B Cy)
Reorganizing terms, the decision rule becomes
_ 1 _ _ P(Cy)
Ts—1 Ts-1 Ts—-1 1
z - + (U Z -z +1 =0.
x (1 —p2) + 5y Z7 pp =y 277 y) + I P(Cy)

Page 2 of 12 (cont.

Version JMHL/2

(©)

(1)) Assuming the true class-conditional distributions are known, the probability

of classification error can be expressed as
P(Error) = P(Cy) / P(x|Cy) dx + P(Cp) / P(x|Cy) dx,
L) R

where Ry and R, are the regions assigned to C; and C5, respectively. [15%]

(i) For the logistic regression model, the conditional probability of class Cy given
the input x is given by

1
1+exp(—wlx—b)

P(Cylx) =

The probability of class C; is

P(Cylx) = 1 = P(Cy|x).

Given a dataset {x, yn}nNzl ;

likelihood of the dataset is

where y, € {C}, C,} represents the class labels, the

N
L(w,b) = [| P(Cy) n=CH PGy 1Ln=C2),

n=1
where I[-] is the indicator function which takes value 1 when its input is true and
0 otherwise. Taking the logarithm of the likelihood, the log-likelihood function

becomes
N
t(w,b) = Z [(X[yn = C1]11In P(Cylxp) +X[yn = Co] In P(Calxn)] .
n=1
[15%]
(i) The decision rule classifies x as class C; when P(Cq|x) > 6. The probability
of a false positive is
P(False Positive) = 1 — 6,
and the probability of a false negative is
P(False Negative) = 6.
The optimal threshold satisfies
Crp - P(False Positive) = Cgy - P(False Negative).
This leads to 8 = Cpp/(Crp + CEpN).
[20%]

Page 3 of 12 (TURN OVER

Version JMHL/2

(d) The likelihood for each unlabeled data point x]i] is given by marginalizing over the

class variable:)

P(x) = PG ICP(Cr),
k=1

where P(xgle) is the Gaussian density for class Cy and P(C},) is the prior probability
for class Cy. The overall likelihood for the unlabeled dataset is

K
P(Xy) = np(x,’{).
k=1

The total log-likelihood combines the labeled and unlabeled datasets:

N K
((©) = > I P(xp,yn) +) InP(xY),
k=1

n=1

where P(xy,yn) = P(xnlyn)P(yn) (labeled data) and P(xY) = ¥, P(x|Cr)P(Cp)
(unlabeled data). This total log-likelihood can be optimised to improve the estimation by
using the unlabeled data.

Page 4 of 12

[20%]

Version JMHL/2

2 Mixture of Gaussians and EM

(a) The joint distribution of X and Z is given by

N M
p(X.Z;0) = 1—[l_[[ﬂmN(xm/lmaEm)]I(Z":m) .

n=1m=1

The marginal likelihood is obtained by summing over all possible latent variables Z

p(X;0) =) p(X.Z:0).
Z

Taking the logarithm, the marginal log-likelihood becomes

N M
log p(X;0) =Tog " | | | | [mmM Ceus ptms Em)] =)
Z

n=1m=1
N M
= Z log Z TN (Xn5 s Zm) | -
n=1 m=1
[20%]
(b) (i) The general auxiliary function is
(6%, 0%D) =B, _, /v, [log p(X, Z:0%4D) .
Substituting p(X, Z; 8), we have
N M
Q(G(k), 9(k+1)) = Z Z Ynm [log Tm +1og N (X5 tms (721)] ,
n=1 m=1
where vum = P(zn = mlxy, 0(%)) are the responsibilities. Expanding the Gaussian
term, we obtain
2 d 2 1 2
log N (xp; pm, 0°1) = =5 log(2n0”) = — [lxn — um ||”
2 202
Thus,
N M d 1
000, 0%y = X" 3 yum [log T = 5 log(270) = ——5lkn = o
n=1m=1
[20%]

Page 5 of 12 (TURN OVER

Version JMHL/2

(©)

(1)) Maximizing Q with respect to u,, leads to

N
(k1) _ Zp=y Ymn

" Z,];]:] Ynm ,
(k)N(x . (k) 2[)
where = Zm ol 2 : 20%
Y M ﬂ(.k)N(xn;,u(.k),O'zI) [J
J=17 J
(i) The joint distribution with binary observations Y is
p(X,Z,Y;0) = p(Y|X)p(X,Z;0),
where p(Y|X) = HnNzl p(ynlxn) and p(yu|x;,) is defined as
1, x, €R,
p(ynlxn) =
0, x,¢R.
[10%]
(ii) The joint distribution p(Y;@) is obtained by summing out the missing X
variables and their corresponding latent variables Z:
N M Yn
p(Y;H):I—[Zﬂ'm / N (x5 s Zm) dxp
n=1m=1 Xn€R
l=yn
[1 - N (Xns ms Zim) dxn] , (1)
x”GR
where y, = 1 if x, € R, and y, = 0 otherwise. Here, ./anR N (xXns s Zm) dxp,
represents the probability mass that the m-th Gaussian component assigns to the
region R. [10%]
(iii) The responsibilities yy,,, representing P(z,, = m | yp, H(k)), are computed as
k
_ ”;(n)P()’n | zn = m,g(k))
nm = , 2)
7 Y0 - gk
Zj:l T P(yn | zn :],0())
where P(y, | zn = m, H(k)) is
k k
(k) /x GRN(xn;,U;(ﬂ),Z;%))dxn, Yn = 1,
P(yn | zn = m,00) = ¢ o (1) 5 (&) ©)
1 —fxneRN(xn;,um s Zm) dxp, yn=0.
This explicitly incorporates the observed binary labels y, and the region R into the
computation of responsibilities. [20%]

Page 6 of 12

Version JMHL/2

3

(a)

Support vector machines

A Support Vector Machine (SVM) is a supervised learning model used for binary

classification tasks. It seeks to find the hyperplane that best separates the data into two
classes. The margin is defined as the distance between the hyperplane and the closest
data points, which are known as support vectors. These support vectors are critical as
they determine the position and orientation of the hyperplane. By maximizing the margin,
SVM favours better generalization to unseen data.

(b) (i) The primal optimization problem is
1 N
: 2
min —=||lw||”+C ,
min 3w fo
subject to

yn(WTXn+b)21_§n, fnZO, n=1,...,N.

The Lagrangian is

N N N
1
L(w,b,§,a,u) = EHWHZ"'Can _Zan [Yn(WTxn +b) -1 +fn] _Z/Jnfn,
= = n=1

n=1 n=1

where @, > 0 and u,, > 0 are Lagrange multipliers.
(i) The Karush-Kuhn-Tucker (KKT) conditions are
e 1. Primal feasibility: y,(w x, +b) > 1 - &, and &, > 0.
* 2. Dual feasibility: a, > 0, u, > 0.
» 3. Complementary slackness: a;, [yn(wan +b)-1+ fn] = 0and u,&, = 0.

* 4. Stationarity:

N N
w= Z UnYnXn, Z anyn=0, u,=0C-—ay.
n=1 n=1

Support vectors correspond to data points for which a;, > 0.

(c) (1) The classifier’s output is determined as

N
FGx) =) @nynk(x,x0) +b,

n=1
where b is derived from the support vectors. The decision boundary is given by

f(x)=0.

Page 7 of 12 (TURN OVER

[15%]

[15%]

[15%]

[15%]

Version JMHL/2

(ii)) The dual problem is convex because

* 1. The objective function involves quadratic terms and is concave with respect

to a (negative definite Hessian).

e 2. The constraints form a convex set.

[209%]

(iii) Given the dataset (x; = —1,y1 = +1), (xp = 0,yp = —-1), (x3 =1,y3 = +1)
with linear kernel k(x,y) = xy and C = 1, the dual optimization problem is

3 3 3
1
max W(a) = Z an — > Z Z AnmYnYmk (Xn, Xm),
n=1m=1

a1,a,a3
n=1
subject to

3
Zanyn:O, 0<a,<C, forn=1,23.
n=1

The linear kernel is k(x, y) = xy. Using the given data points, the kernel matrix K

is

1 0 -1
K=10 0 O
-1 0 1
The dual objective function becomes
1 I 0 -1
W(a):a1+a2+a3—§[a/1 (0% 0/3] 0 0 O a)
-1 0 1 (0%

Simplify the quadratic term,

3 3
Z Z AnmYnYmk (Xn, Xm) =

n=1 m=1

(a/% - 2013 + 0/%) .

| =
N =

Thus, the objective is
1
W(a) =a)+ap+ a3 — > (a% - 23 +a%) .

The constraints are

* 1. Equality constraint,
3
Zanynzo = a)-—ax+az3=0.
n=1

Page 8 of 12 (cont.

Version JMHL/2

e 2. Box constraints,
0<aj,a,a3 <1.
From the equality constraint,
ay = aq +as.

Substitute this into the objective function,

1
W(ay,a3) = a1+ (a) +a3) +az — > (a% - 2103 +a§) .

Simplify,
1
W(ay,a3) =2a) +2a3 — > (a% - 2a1a3 + az) .

We expand and combine terms,

15 15
W(ai,az) =2a1 + 203 — —a5 + ajazy — —a5.
(a1, a3) 1 37 50 Haie3 - oo
To maximize W (a1, @3), compute the partial derivatives,
ow
—:2—0{1+a’3, —:2+a1—a/3.
00’1 (9&’3

Set these derivatives to zero,
2-a;+a3=0, 2+a;—-a3=0.
Solve this system of equations,

* 1. From the first equation: a3 = a1 — 2.

» 2. Substitute into the second equation:
24a;-(a;-2)=0 = a1=1.
e 3. Substitute @1 = 1 into 3 = @ — 2:
az3=1-2=-1.
However, a3 must satisfy 0 < a3 < 1, so the optimal solution occurs at the boundary,
| = 1, a3 = 0.
Using the equality constraint ap = @] + a@3:
ar=1+0=1.
The optimal values of the dual variables are
ar=1, ap=1, a3=0.

[20%]

Page 9 of 12 (TURN OVER

Version JMHL/2

4 Transformer neural networks

(@) (i) The output layer should be a softmax layer that maps the output of the final
transformer block to a probability distribution over the French vocabulary. The
output layer involves: 1) a weight matrix of shape (d, VEpench) and 2) a bias
vector of shape (VErench). The total number of parameters in the output layer is
d X VErench + VFrench- [10%]

(ii) A. Poistional encodings: they enable the model to consider the order of the
sequence elements during attention computation. Without positional encoding,
the model would treat all input embeddings as a "bag of words" without any
temporal context. Sinusoidal functions are used to encode positions. These
functions allow the model to generalize to unseen sequence lengths because of
their continuous nature.

B. Self-attention: Allows to compute relationships between all words in the
sequence in parallel, including long-range ones, which are crucial for tasks like
translation where word order and context are vital. It helps the model focus on
relevant parts of the input sequence for generating each output word. Computes
attention scores between words by taking dot products between transformed
versions of the input embeddings. These scores are then normalized using
a softmax function to produce attention weights, which determine how much
influence each word has on another. [20%]

(b) (i) The self-attention mechanism performs the following multiplications for a
sequence of length (T + T”) with feature dimension d:

* Value, Key an Query Matrices. Calculating the value, query and key matrices
V, Q, and K involves in each case multiplying an embedding matrix (7 +7’) x d
with a weight matrix d X d, costing 3(T + T”)d>.

* Query-Key Multiplication. Calculating the product of query and key matrices
QKT involves multiplying a (T + 7’) x d matrix with a d x (T + T’) matrix,
costing (T + T”)?2d.

* Final Multiplication. Multiplying the attention matrix ((7 +7’) x (T +T"))
with the value matrix V (T +T7) x d) costs (T +T")%d.

The total cost is 2(T + T”)2d + 3(T + T’)d?. For long sequences (T + T’ > 1), the
quadratic term in 7 + 77 dominates, posing challenges for scalability.
[20%]

(ii)) Multi-head attention extends single-head attention by using multiple attention

Page 10 of 12 (cont.

Version JMHL/2

(©)

heads. Each head learns a separate representation by applying attention with
independently trained query, key and value (Q, K, and V) projections of the
embeddings. The outputs of all heads are linearly combined to produce the final
output. Multiple attention heads allow the model to attend to different parts of the
input sequence simultaneously. This enables the model to capture different types of
relationships simultaneously and provides richer and more versatile representations
of the sequence elements.

(iii) Masking is applied to the self-attention mechanism to restrict the flow of
information. A causal mask matrix is used to ensure that the attention mechanism
at position ¢ only considers embeddings from positions < t. Mathematically, the
key-query product for future embeddings are set to —oco before evaluating the softmax
function. For query and key matrices Q and K, we have

Attention-Weights(Q, K) = softmax (QK Ty m) ,
where M is the mask matrix, defined as

o 0 if j <i,
Mli, j] = e
—oo if j > 1.

The addition of —co ensures that the softmax outputs for future embeddings become
zero, effectively masking them.

Comparison and contrast between transformers and RNNs:

* Parallelism: Transformers process all tokens simultaneously, while RNNs require
sequential processing, making transformers faster for long sequences by using GPU
acceleration.

* Sequence Length: Transformers handle long-range dependencies efficiently due
to self-attention, whereas RNNs struggle with vanishing gradients.

* Scalability: Transformers scale better with hardware accelerators, while RNNs are
limited by sequential operations. However, transformers scale worse with sequence
length as their cost is quadratic, while RNNs have a linear cost.

END OF PAPER

Page 11 of 12

[15%]

[15%]

[20%]

Version JMHL/2

THIS PAGE IS BLANK

Page 12 of 12

