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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 5 May 2021 1.30 to 3.10

Module 4F10

DEEP LEARNING AND STRUCTURED DATA

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 15 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 An M-component Gaussian mixture model (GMM) is to be used to model N data
points X = {x1, . . . ,xN } of dimension d. The model parameters, θ, are the mean
vectors µ = {µ1, . . . , µM }, covariance matrices Σ = {Σ1, . . . ,ΣM } and prior probabilities
π = {π1, . . . , πM } of the M components.

(a) Z = {z1, . . . , zN } are latent variables associated with X, where zn = m if xn was
sampled from the m-th component in the GMM. The joint distribution of X and Z is

p(X,Z; θ) =
N∏

n=1

M∏
m=1

π
1(zn=m)
m N(xn; µm,Σm)

1(zn=m)

where 1(·) is an indicator function taking value 1 if its input is true and 0 otherwise. Use
this expression to derive the form of the log-likelihood function log p(X; θ). [20%]

(b) The mean vectors, µ, and covariance matrices, Σ, are known and fixed so that the
only unknown parameters are the prior probabilities π. The priors are to be estimated
using the Expectation-Maximisation (EM) algorithm.

(i) Show that the EM auxiliary function can be expressed as

Q(θ(k),θ(k+1)) =
N∑

n=1

[ M∑
m=1

anm log(π(k+1)
m )

]
+ constant

The value of anm should be clearly defined, as well as the meaning of the variables.
You can use the fact that the EM auxiliary function for a model with latent variables
Z, observed data X and parameters θ is given by

Q(θ(k),θ(k+1)) =
∑
Z

P(Z|X; θ(k)) log(p(X,Z; θ(k+1)))

All elements of the auxiliary function that are not dependent on the component
priors are combined into the constant term. [20%]

(ii) Obtain the EM update equation for π(k+1)
m by optimising the Lagrangian

function

L(π(k+1), λ) = Q(θ(k),θ(k+1)) + λ

( M∑
m=1

π
(k+1)
m − 1

)
Write your update equation in terms of anm from part (b)(i) . [20%]
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(c) For a particular task the dimensionality of the observation is 1, d = 1, so that
µ = {µ1, . . . , µM } and Σ = {σ2

1 , . . . ,σ
2
M } contain scalars. Instead of directly observing

the random variables X only the output of a classifier is given for each observation,
S = {s1, . . . , sN }, where sn is 1 if xn ≥ t and 0 otherwise for a particular threshold t. The
joint distribution can now be expressed as

p(X,Z,S; θ, t) =
N∏

n=1

[( M∏
m=1

π
1(zn=m)
m N(xn; µm, σ

2
m)

1(zn=m)

)
s1(xn≥t)
n (1 − sn)

1(xn<t)

]
Note 00 = 1.

(i) Derive the log-likelihood function log(P(S; θ, t)) using the expression above.
Note that, in this case, only S is observed and X and Z are unknown. [20%]

(ii) Discuss how EM can be used to estimate the component priors π for this task.
[20%]
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2 A classifier is to be constructed using generative models and Bayes’ decision rule.
The training data comprises d-dimensional feature vectors x1, . . . ,xN and corresponding
labels y1, . . . , yN , where each label indicates one of K classes, ω1, . . . ,ωK . For class ωk
the class-conditional probability distribution is given by p(x|ωk ) and the prior by P(ωk ).

(a) All the parameters of the classifier are known. A test observation x? is to be labelled
using the classifier. Decision rules are to be derived for two forms of loss functions. Any
approximations and assumptions in defining the rules should be stated.

(i) The loss when the classifier makes an error is 1, and 0 when the classifier is
correct. Give an expression for the decision rule for the test sample that minimises
the expected loss. You should express the decision rule in terms of the class priors
and class-conditional probability distributions. [15%]

(ii) The loss now depends on the correct class. When the classifier makes an error
and the correct class was ωk the loss is lk , and again 0 when the classifier is correct.
Derive a new decision rule that again minimises the expected loss in terms of lk , the
class priors and class-conditional probability distributions. [15%]

(b) The classifier partitions the feature space into K regions Ω1, . . . ,ΩK , such that the
classifier labels an observation x that is in region Ωk as ωk . Derive an expression for the
expected loss of the classifier using the loss in part (a)(ii). You should clearly state any
approximations being made. [15%]

(c) MultivariateGaussian distributions are to be used as the class-conditional probability
distributions.

(i) Show that the posterior of class ωk given test observation x? can be written
in the form of a softmax function using quadratic functions of x?. [30%]

(ii) Discuss the advantages and disadvantages of estimating the prior and
parameters of the multivariate Gaussian distribution for each class ωk using the
available training data and either: maximum likelihood estimation of the class-
conditional probability distributions and priors; or directly minimising the expected
loss from part (b). [25%]
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3 A neural network system is to be designed to classify a speaker’s emotion from a
spoken sentence. The input is an utterance represented by a sequence of d-dimensional
vectors, x1, . . . ,xT , with each vector in the sequence representing 10milliseconds of audio.
The length of the sequence,T , varies from utterance to utterance. The output of the system,
y, is one of 5 emotions (neutral, angry, sad, frustrated, happy) describing the speaker’s
emotion. It is proposed to use a network incorporating a single recurrent network layer,
which is connected to a final classification layer. Two forms of activation function, φ(z),
are considered for the recurrent layer (α > 0):

(1) φ(z) = max(0, αz); (2) φ(z) =

{
max(0, αz); z ≤ 1
α; z > 1

(a) Describe an overall network structure for the emotion classification task
incorporating a single unidirectional layer of recurrent units. You should clearly describe
the input, recurrent layer and any further layers. Give two options for how the input to the
final classification layer can be obtained from the recurrent layer, stating the advantages
and limitations of your choice. [30%]

(b) The parameters of the network are to be trained using gradient-descent based
optimisation.

(i) Sketch the two forms of recurrent layer activation function given. For the
form of activation function in (1) compute the activation function output mean and
variance if z is Gaussian distributed with mean of zero and variance of σ2. Note∫ ∞
0 xN(x; 0, σ2)dx = σ

2

√
2
π .

[20%]

(ii) Discuss how the results from part (b)(i) can be used to initialise the recurrent
layer network parameters. You should give an appropriate form of parameter
initialisation for each case, clearly motivating the form that you have selected.

[20%]

(iii) Which of the two forms of activation function is expected to be more sensitive
to initialisation, justifying your answer? [15%]

(c) The system is required to operate in scenarios where there are significant levels of
background noise. A separate network is available that generates a vector n that describes
the background noise for a speaker’s utterance. Describe how this vector can be used in
the emotion classification system to improve performance. [15%]
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4 (a) Give a definition of the margin of a linear classifier and indicate why classifiers
with maximum margin are typically preferred. [10%]

(b) An alternative to the max margin classifier is the nearest-neighbour classifier, which
assigns a new input vector x to the same class as that of the nearest input vector
from the training set, where in the simplest case, the distance between two vectors
x = (x1, . . . , xD)

T and x′ = (x′1, . . . , x
′
D)

T is defined by their squared Euclidean distance,
given by

∑D
d=1(xd − x′d)

2.

(i) Write the squared Euclidean distance between x and x′ in terms of dot products
between vectors. [15%]

(ii) Use the kernel trick to obtain the squared Euclidean distance between x and
x′ in a non-linear feature space specified by a kernel function k. [15%]

(iii) When do you expect the nearest-neighbour classifier with kernel function k to
outperform the original nearest-neighbour classifier? [15%]

(c) Let y(x) = wTx+ b be a hard-margin SVM classifier trained on a dataset formed by
input features x1, . . . ,xN in Rd and corresponding target variables t1, . . . , tN in {−1,1},
such that y(x+) = 1 and y(x−) = −1 for positive and negative support vectors x+ and x−
in {x1, . . . ,xN }, respectively.

(i) Derive the magnitude M of the margin of this classifier as a function of w.
Justify your answer. [15%]

(ii) Describe how minimising 1
2wTw relates to maximising the margin. [10%]

(iii) Show that the margin magnitude M is also given by M = 1/
√∑N

n=1 an, where
a = (a1, . . . ,an)

T is the solution to the dual problem

max
a

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmxTn xm s.t.
N∑

n=1
antn = 0 , {an ≥ 0}Nn=1 .

Recall that the solution for a, b andw satisfies that either an = 0 or tn(wTxn+b)−1 =
0, for n = 1, . . . ,N , so that the objective function for the dual problem and the
objective function for the original problem take the same value. [20%]

END OF PAPER
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