
Solutions: 4F11 Speech and Language Processing, 2014

1. Decoding and Context-Dependent Phone Models

(a) Taking as an example the simple 4 word (AND, BILL, BIT, BEN) from lectures
then use: [15%]

ae n d

b ih l

b ih t

b eh n

BILL

BIT

BEN

AND

BILL

BIT

BEN

AND

p
BENBEN

Word Begin Word End

Hidden
Markov Model InstanceLanguage

Model
Acoustic
Models

p
ANDAND

sp

sp

sp

sp

The bigram log probabilities are explicit in the network.

(b) The Viterbi algorithm can be applied to the above structure (it is an HMM) not-
ing that between models/words the transition probabilities come from the language
model and not the internal phone level transition probabilities.

For an N -state HMM, with observation distributions bi(ot) and state transition prob-
abilities ai,j the Viterbi algorithm is as follows.

Initialization:
φ1(0) = 1.0
φj(0) = 0.0 for 1 < j < N and φ1(t) = 0.0 for 1 ≤ t ≤ T

Recursion:
for t = 1, 2, . . . , T
. . . for j = 2, 3, . . . , N − 1
. compute φj(t) = max1≤k<N [φk(t− 1)akj] bj(ot)
. store the predecessor node: predk(t)

Termination:

p(O,X∗|λ) = max
1<k<N

φk(T)akN

The sequence of models and hence the sequence of words can be found by back-
tracing along the best state-level path. It is only necessary to store this path at word
boundaries (the token-passing implementation includes explicit ways to do this) for
efficiency. Note that an explanation based on token-passing is also a valid solution
here! [20%]

1

melw2
Text Box
Prof P C Woodland

(c) If a trigram is used then the two-word (rather than single word) context needs
to be made explicit in the network. This can be made explicit in the network but
requires a huge number of network copies. There are a number of ways that this can
be approached to efficiently decode. First is to generate word lattices with a bigram
model and then rescore these with a trigram model. This only requires expansion of
the network structure that is present in the lattice and is hence much more efficient.
The second is to use a Weighted Finite State transducer model to optimise the overall
structure which can greatly compress the structure. [Further answers not covered
directly in lectures include the use of dynamic generation of the network graph and
only the parts of the graph that are within the pruning beam need to be generated]. [15%]

(d)(i) Triphones are models of individual phones that take into account the imme-
diately preceding and following phonetic context. If the context takes account of
phonetic context across word boundaries they are cross-word triphones. This mod-
els co-articulation effects well and assuming that variability is just due to context
then a single Gaussian may be ok (in practice there are other sources of variation).
For a context independent model there is no explicit model of co-articulation but a
Gaussian mixture of sufficient order can capture the variation. [15%]

(d)(ii) Phonetic decision trees. A tree is grown at the state level, normally for each of
three states in left-to-right phone models. A simple binary tree with yes/no questions
at each node is used to split contexts into equivalence classes. The questions are
typically about groups of phone contexts and are aimed at generalisation through,
for instance, phonetic knowledge of similar phones. The trees are automatically
grown and at each stage the question chosen is that which gives the largest increase
in approximate log likelihood and/or by an occupancy threshold. At the leaf nodes
there are groups of contexts which are tied and used to build models. The advantage
is that there is no need to back off to shorter contexts as any triphone context will
fall into one class or another. Furthermore the technique can be applied to contexts
beyond triphones. Disadvantages are that for efficiency a very simple model of log
likelihood using a single Gaussian approximation at all levels is used; and that the
tree building is greedy - i.e. it makes only locally optimal data splits. [25%]

(d)(iii) The main issues are unseen models (not an issue if using decision tree based
tying) and the significantly greater complexity of decoding. Again need multi-pass
recognition, WFSTs or dynamic decoding. [10%]

2

2. HMM training

(a) MFCCs are a good, compact model of the local spectrum. The (normalised) log
energy is also very useful in making certain distinctions. The reason deltas and delta-
deltas are used is due to the HMM assumptions: in particular that the observations
are independent given the state that generated it, and hence that the previous and
following observations do not affect the likelihood. Since this is not true for speech,
(speech has a high degree of continuity) then the local dynamics can be captured by
making them explicit in the observation vector. [15%]

(b) The backward probability needs to be defined so that it can be combined with
αj(t). Hence

βj(t) = p(ot+1,ot+2, . . . ,oT |x(t) = j, λ)

It can be computed recursively backwards in time:
Initialisation:

βj(T) = ajN 1 < j ≤ N

Recursion:
for t = T − 1, T − 2, . . . , 2, 1
. . . for j = N − 1, N − 2, . . . , 1

βj(t) =
N−1∑
k=2

ajkbk(ot+1)βk(t+ 1)

[20%]

(c) To find the posterior probability of state occupation given the observation se-
quence, first note that multiplying the αj(t) and βj(t) yields

p(x(t) = j,O |λ) = αj(t)βj(t)

and hence

Lj(t) = P (x(t) = j |O, λ) =
1

p(O|λ)
αj(t)βj(t)

where p(O|λ) can be computed from either the α or β values e,g,

p(O|λ) =
N−1∑
k=2

αk(T)akN

[10%]

(d) Re-estimation formula for the mean parameter vector:

µ̂j =

∑T
t=1 Lj(t)ot∑T
t=1 Lj(t)

3

If there are multiple observation sequences, then sum the numerator statistics and
the denominator statistics over the multiple training sequences:

µ̂j =

∑R
r=1

∑T (r)

t=1 L
(r)
j (t)o

(r)
t∑R

r=1

∑T (r)

t=1 L
(r)
j (t)

[15%]

(e)(i) For Gaussian mixture distributions each of the component Gaussians may be
considered as a separate state thus:

ij

aij

aijcj2

aijcj1

cjm

a

ii j

j1

j2

jm

The posterior probability of a particular Gaussian component of a particular state
is:

Ljm(t) = P (x(t) = jm|O,M)

=
1

p(O|M)

N−1∑
i=2

αi(t− 1)aijcjmbjm(ot)βj(t)

The estimates of the mean will be the similar to the single Gaussian case

µ̂jm =

T∑
t=1

Ljm(t)ot

T∑
t=1

Ljm(t)

The component priors can be estimated as

ĉjm =
Estimated Number of vectors from comp. m state j

Estimated number of vectors from state j

In terms of the posterior probability of state occupation this becomes

ĉjm =

T∑
t=1

Ljm(t)

T∑
t=1

Lj(t)

4

[25%]

(e)(ii) [Not covered in lectures] The problem is that in maximum likelihood esti-
mation that the likelihood can be maximised in a way that doesn’t generalise well
by locating Gaussians at training data samples with a variance that tends to zero.
This sometimes causes numerical issues with training, but more importantly these
Gaussians do not generalise well to test data. The solution is either to modify the
estimation procedure to e.g. a MAP-based estimation with a prior on the variance,
or to explicitly clamp the variance to a minimum value (which may also be viewed
as using a prior distribution). [15%]

5

3. Language Models

(a) N-grams are popular as: they can be computed from real data; they guarantee
full coverage of all word sequences; they simultaneously encode syntax, semantics
and pragmatics; they concentrate on very local dependencies; they are very sim-
ple to compute during recognition - essentially a single table lookup (plus back off
computation). [10%]

(b) To find the probability assigned to a word sequence w1 . . . wM by an n-gram
language model of order N . The sequence is extended to include w0 = <s> and
wM+1 = </s>. It follows that

P (w0 . . . wM+1) =
∏M+1

k=1 P (wk|wk−1...w0)

=
∏M+1

k=1 P (wk|wk−1...wk−N+1)

where the N-th order Markov assumption is made at the second line. n-gram proba-
bilities of order less than N are used at the start of the sentence, as needed for the
first N − 1 words. [20%]

(c)(i) For a trigram language model, counts f(wi, wj, wk) are collected for all trigrams
wi, wj, wk, counts f(wi, wj) for all bigrams wi, wj and counts f(wi) for all unigrams
wi in the text corpus (the lower order counts can be found by summing the higher
order counts). For an interpolated language model based on a linear combination of
trigram, bigram, and unigram counts:

P̂ (wk|wi, wj) = λ3
f(wi, wj, wk)

f(wi, wj)
+ λ2

f(wj, wk)

f(wj)
+ λ1

f(wk)∑
i f(wi

where the lambda are positive and λ1 + λ2 + λ3 = 1. Note that there must be a
scheme to tie the weights across e.g. different count ranges. It would be expected
that for high counts that λ3 might be close to one for example, and for low counts
of the trigram the count would be small. Note also need to deal with the situation
that the trigram doesn’t occur in which case the trigram count may be zero. [20%]

(c) (ii) To set the weights using deleted interpolation, need to first divide the text
collection nto several parts. One part is held out; the counts f(·) are estimated on the
other parts and the trigram P̂ (wk|wi, wj) is estimated, as above, and the component
models are kept individually. For the heldout data, the training objective

P (held out) =
∏
i

P̂ (w(i)|w(i− 2), w(i− 1)

The parameters λ are varied to optimise the likelihood of the held-out set. This
process is repeated by rotating the held-out set over all the divided parts and hence
able to optimise the the interpolation weights (note that as above the weights are
not normally trigram specific). [20%]

6

(c) (iii) For a trigram language model based on the stupid back-off, the stupid
back-off assigns scores, rather than correctly normalised probabilities as done by the
interpolated language model, to word sequences as

S(wk|wi, wj) =

{
f(wi,wj ,wk)

f(wi,wj)
if f(wi, wj, wk) > 0

αS(wk|wj) otherwise

where the bigram score S(wk|wj) is found by a similar unnormalised backing off to
the unigram distribution if f(wj, wk) = 0.

The stupid backoff is much easier to compute and works particularly well for recogni-
tion/translation tasks with very large amounts of training data. However, it cannot
be used if correctly normalised probabilities are needed. [20%]

(d) Perplexity (PP) is related to the entropy (H) of the language model

PP = 2H or H = log2 PP

The probability of a word sequence is often decomposed into the product of word-
prediction conditional probabilities:

P (w(1)w(2) . . . w(M)) =
M∏
k=1

P (w(k)|w(1) . . . w(k − 1))

The entropy of this sequence is (letting M →∞ to obtain a good estimate)

H = lim
M→∞

− 1

M

M∑
k=1

log2 P (w(k)|w(1) . . . w(k − 1))

The perplexity is given by

PP = lim
M→∞

(
P (w(1)w(2) . . . w(M))−

1
M

)
= lim

M→∞

(
M∏
k=1

P (w(k)|w(1) . . . w(k − 1))

)− 1
M

In practice, will only have S sequences of words on which to estimate the entropy of
the language model. The entropy is

H = − 1∑
s∈S Ms

(∑
s∈S

Ms∑
k=1

log2 P (w(k)|w(1) . . . w(k − 1))

)
When we compute the perplexity using this over a corpus of test sentences, we get
the Test Set Perplexity which is the value normally quoted.

The interpolated LM can be assessed using perplexity; perplexity is directly related to
the criterion used to optimise the interpolation weights. However, the stupid backoff
scheme does not yield proper log-likelihoods and so perplexity as computed under
that model is not valid. [10%]

7

4. Machine Translation

(a) In statistical machine translation, fertility is a probability distribution over the
number of target words each source word can generate. It approximates phrase
modelling. The distortion model describes how target language words are distributed
throughout the target sentence when generated from a single source word. [15%]

(b) Modelling power and computational tractability of IBM Model-1 and IBM Model-
4. IBM 4 is a much more powerful model. It contains a lexical translation model
and a NULL translation model, as does Model 1, but model 4 also attempts to
capture fertility and distortion. However, Model-4 is deficient, in that it assigns some
probability mass to non-sentences so that it is not a proper probability distribution
over alignments and translations. Parameter estimation and (Viterbi) alignment
are also difficult (impossible) to implement exactly. Model-1 is less detailed, but
computationally very efficient. [15%]

(c)(i) For the sentence eI1 = e1 . . . eI and its translation fJ
1 = f1 . . . fJ from the

parallel text corpus, the alignment variables aj take values in [1, . . . , I] so that aj = i
implies that fj ↔ ei. This can be extended to allow alignment to NULL. [10%]

(c)(ii) Alignment likelihood P (fJ
1 , a

J
1 , J |eI1) under Model-2.

P (fJ
1 , a

J
1 , J |eI1) = P (fJ

1 |J, aJ1 , eI1)P (aJ1 |J, eI1)P (J |I)

=
∏J

j=1 pT (fj|eaj)PA(aJ1 |J, I)P (J |I)

Under Model-2, the alignment distribution has the form

PA(aJ1 |J, I) =
J∏

j=1

pM2(aj|j, J, I)

[15%]

(c)(iii) To derive an expression for calculation of the probability P (aj = i|fJ
1 , e

I
1)

under Model-2. Following the second examples paper,

P (aj = i|fJ
1 , e

I
1) =

pM2(i|j, I, J)pT (fj|ei)∑
i′ pM2(i′|j, I, J)pT (fj|ei′)

To update the component distributions of the model, the parameters are updated as

pM2(i|j, I, J) =
#M2(i, j, J, I)∑
i′ #M2(i′, j, J, I)

where #M2(i, j, J, I) is the accumulation over the parallel text of the P (aj = i|fJ
1 , e

I
1)

for sentence pairs of lengths I and J . Similarly,

pT (f |e) =
#T (f ↔ e)∑
f ′ #T (f ′ ↔ e)

8

where where #T (i, j, J, I) is the accumulation over the parallel text of the P (aj =
i|fJ

1 , e
I
1) for sentence pairs of lengths I and J for which ei == e and fj == f . [25%]

(d) Parallel text consists of French and English travel documents and automatic
methods that could be used to create a English-French dictionary for word to word
translation. The word-to-word translation distribution PT (f |e) is a more general case
of a translation dictionary. The distribution estimated over the parallel text will be
extremely large, and also extremely noisy, and so not directly suitable for presentation
to humans. Some scheme for restricting the number of possible translations of each
source word will have to be introduced. One approach could be to prune PT (f |e) to
contain only a few of the most likely candidates for each word. Another approach
could be to align the parallel text under the model and extract the very frequently
occurring words and phrases from the aligned text. These two approaches can be
used at the word level. For phrase level, it is difficult to extend Model 2, or other
word alignment models, to directly model phrasal alignment. A more straightforward
approach is to extract translation phrase pairs directly from the word-aligned parallel
text. Here too only the most frequently occurring phrase pairs should be kept, as
otherwise there may be too many options to present to readers. [20%]

9

