
Engineering Tripos Part IIB FOURTH YEAR

Module 4F12: Computer Vision

Image Structure 2022 Solutions

1. (a) i. Solution:
The central motivation is data reduction/compression: raw pixel data is impractical to process
directly for current hardware, particularly for real-time applications.
Desirable properties for generic features include:
(1) They should preserve the useful information in an image (e.g. 2D shape of objects);
(ii) They should discard redundant/nuisance information (e.g. lighting conditions);
(iii) They should be as generic as possible (so the same features are useful across a wide range
of applications).

(b) i. Solution:
To reduce the effects of high-frequency noise, we can convolve the image with a 2D Gaussian
(i.e. low-pass) filter.
Mathematically, this corresponds to producing a smoothed image:

S(x, y) =
!

u

!

v

Gσ(u, v)I(x− u, y − v)

where

Gσ(u, v) =
1

2πσ2
exp

"
− u2 + v2

2σ2

#

This can be implemented efficiently by using the separable property of the Gaussian:
Using Gσ(x, y) as above to denote a 2D Gaussian with standard deviation σ along both axes
and let gσ(x) denote a 1D Gaussian. The separable property of the Gaussian ensures that

Gσ(x, y) ∗ I(x, y) = gσ(x) ∗ [gσ(y) ∗ I(x, y)]

Consequently, convolution with the discrete 2D kernel of 25 elements can be replaced by two
convolutions with 1D kernels, each of size 5 elements.
Savings:
1. The output image size after filtering via “valid” convolution is 316 × 236. The total cost
(in multiplications) for using 2D Gaussians is 316× 236× 5× 5 = 1, 864, 400
2. To perform the convolution with 1D Gaussians requires two steps. It is slightly cheaper to
perform the vertical 1D Gaussian first (this results from the fact that the image is not square).
The output size from the vertical 1D Gaussian convolution is 320× 236, and requires 5× 1×
320×236 = 377, 600 multiplications to produce. The output from the second (horizontal) 1D
Gaussian will have size 316×236 and will required 1×5×316×236 = 372, 880 multiplications
to produce. In total, the cost of both stages of the 1D approach is 750, 480.
3. The overall count of multiplications saved is 1, 864, 400− 750, 480 = 1, 113, 920.

ii. Solution:
We can derive a discrete 3 × 3 filter which approximates the 2-D Laplcian by considering
Taylor expansion at a given location (x, y) the image, first in one dimension:

I(x+ δ, y) = I(x) + δ
∂

∂x
I(x, y) +

δ2

2

∂2

∂x2
I(x, y) +O(δ3)

We then consider the cases when δ = 1 and δ = −1:

I(x+ 1, y) = I(x, y) +
∂

∂x
I(x, y) +

1

2

∂2

∂x2
I(x, y) +O(δ3)

I(x− 1, y) = I(x, y)− ∂

∂x
I(x, y) +

1

2

∂2

∂x2
I(x, y) +O(δ3)

1

iPad

iPad

iPad

Adding one to the other and neglecting higher order terms yields:

I(x+ 1, y) + I(x− 1, y) ≈ 2I(x, y) +
∂2

∂x2
I(x, y)

=⇒ ∂2

∂x2
I(x, y) ≈ I(x+ 1, y)− 2I(x, y) + I(x− 1, y)

A similar relation holds for the y direction. Thus we have that:

∇2I(x, y) =

$
∂2

∂x2
+

∂2

∂x2

%
I(x, y) ≈

I(x+ 1, y)− 2I(x, y) + I(x− 1, y) + I(x, y + 1)− 2I(x, y) + I(x, y − 1)

This can be implemented with a 3× 3 discrete filter of the form:

&

'
0 1 0
1 −4 1
0 1 0

(

)

Implementation with 1D filters. Since the Laplacian represents the sum of two 1D kernels
computing second derivatives, we can instead convolve I(x, y) with the following two filters

∂x2 =
*
1 −2 1

+
∂y2 =

&

'
1
−2
1

(

)

and sum their outputs:

∇2I(x, y) =
∂2

∂x2
I(x, y) +

∂2

∂x2
I(x, y)

The 1D filter approach requires fewer multiplications: each Laplacian response requires 3+3 =
6 multiplications (vs 3 · 3 = 9 multiplications for the 3 × 3 kernel). However, under the
assumptions of the question (the filters are applied sequentially), it requires more memory:

After applying the first 1D kernel (e.g. ∂2

∂x2) we must keep hold I(x, y) and ∂2

∂x2 I(x, y) in

memory while beginning to compute ∂2

∂x2 I(x, y) in order to generate the final result that sums
the 1D filter responses in each position.
Note: given the size of the image (320×240), we neglect (as insignificant) the memory required
to store the additional 3 filter values required by the 9 = 3 · 3 2D kernel over the 6 = 3 + 3
filter values associated with the two 1D kernels.

iii. Solution:
While there are multiple viable algorithms, the course focused on a simple implementation of
the Canny Edge detector, so this is the solution described below.
1. The image I(x, y) is first filtered with a 2D Gaussian kernel, Gσ, to produce a smoothed
image S(x, y).
2. The gradient of S(x, y) is then computed at every pixel (i.e. ∇S = ∇(Gσ ∗ I)).
3. Non-maxima suppression is applied over the magnitude of the gradients (placing “edgels”
at locations where |∇S| is greater than nearby values of |∇S| in directions ±∇S.
4. Edgels are thresholded, so that only those with a |∇S| above some threshold are retained.
5. Double-thresholding is applied to determine “strong” and “weak” edges, before hysteresis
is employed to suppress weak edges (Note: this stage was not discussed explicitly in lectures).
The operations of computing gradients and removing high-frequency noise (i.e. steps 1 and 2)

2

iPad

are computed efficiently by combining them into a single operation via the derivative theorem
of convolution that ensures the associativity of differentiation and convolution:

∇S = ∇(Gσ ∗ I) =

&

'
∂(Gσ∗I)

∂x

∂(Gσ∗I)
∂y

(

) =

&

'
∂Gσ

∂x ∗ I
∂Gσ

∂y ∗ I

(

)

(c) i. Solution:
Edges have two primary limitations that renders them ineffective as keypoints for correspon-
dences:
(1) They only allow localistaion in one dimension - the direction normal to the edge. They
do not allow localisation parallel to the edge (the “aperture problem”);
(2) Edges cannot be used to determine the scale of a feature.

ii. Solution:
(1) The descriptor is computed at the location of a keypoint - this provides translation in-
variance.
(2) The descriptor is computed from 16× 16 pixels at the characteristic scale determined by
the corresponding keypoint - this provides scale invariance.
(3) The gradient orientations of the descriptor are stored relative to the dominant orientation
of the keypoint - this provides rotation invariance.
(4) The gradients computed at each pixel in the patch are weighted a Gaussian (with σ equal
to half the width of the descriptor window i.e. σ = 8 pixels for 16 × 16 windows) - this
provides a degree of partial occlusion invariance by reducing the influence of image gradients
far from the centre that are most susceptible to misregistration.
(5) Histograms are computed over cells of 4 × 4 pixels. As a result, an image gradient can
shift by up to 4 pixels while still contributing to the same histogram - this provides a small
degree of local positional invariance.
(6) Gradient orientations are aggregated in histograms with relatively coarse bins (8 orienta-
tion bins per histogram) - this provides a small degree of further local rotational invariance.
(7) The SIFT descriptor is normalised to unit length - this provides invariance to affine
changes in illumination.
(8) Each value in the descriptor vector is then further truncated to a maximum value of 0.2
and then renormalised. This provides a small degree of invariance to non-linear illumination
changes (e.g. due to camera saturation).
Typical failures scenarios include: (i) large changes in viewpoint, (ii) background clutter at
object boundaries.

iii. Solution:
There are many possible nuisance factors. Reasonable answers could include:
1. Partial occlusion (caused by any of: (i) snow obscuring features of the building, such as
roof markings or windows, (ii) greater/fewer numbers of tourists at different times of year
could add further occlusion).
2. Differences in light source position (for images taken at similar times on the same day,
the sun will not have moved much, but photos across seasons could have significantly greater
variation in sun position).
3. Significant differences in illumination and contrast (e.g. from winter snow reflection and/or
shadows thrown by the summer sun).
4. Differences in reflectance properties of the surfaces (dry building walls vs moist walls from
snow).

3

iPad

iPad

2 (a) (i) Assumptions: pin-hole camera, central planar projection with no non-
linear distortion.
Coordinates: [- ,. , /]> =

h
-1
-4

,

-2
-4

,

-3
-4

i>
, [D, E]> =

h
G1
G3
,

G2
G3

i>
. [10%]

(ii) P = K [R|T], where K =

2666664

5 :D 0 D0
0 5 :E E0
0 0 1

3777775
- 3 ⇥ 3 upper triangular (4 DoF,

5 parameters), R - 3⇥3 orthogonal (3 DoF, 3 parameters if parametrised using Euler
angles), T - 3 ⇥ 1 vector encoding camera position (3 DoF, 3 parameters).
Here (D0, E0) - principal point, 5 - focal length, (:D, :E) - pixel sizes, (UD =
:D 5 , UE = :E 5) - image scaling factors, UE

UD

- aspect ratio.
Total: 11 parameters, 10 DoF. [15%]

(iii) Setting up homogeneuous system of equations. One 2D - (D8, E8) to 3D -

(-8,.8, /8) correspondence gives two equations: D8 =
?11-8+?12.8+?13/8+?14
?31-8+?32.8+?33/8+?34 and

E8 =
?21-8+?22.8+?23/8+?24
?31-8+?32.8+?33/8+?34 . Rearranged as:"

-8 .8 /8 1 0 0 0 0 �D8-8 �D8.8 �D8/8 �D8
0 0 0 0 -8 .8 /8 1 �E8-8 �E8.8 �E8/8 �E8

#
p
> =

"
0
0

#
,

where p = [?11, ?12, · · · , ?34]> is a 12 ⇥ 1 column vector. For N pairs we have:
Ap = 0, where A is a 2= ⇥ 12 matrix.

Solving system of equations. Since scale of p does not matter (11 DoF) we can
solve this by orthogonal least squares. The solution is the eigenvector of �>�
corresponding to the smallest eigen value. This solution minimizes |Ap| such that
|p| = 1 and can be derived by considering Rayleigh’s Quotient: _1  p

>
A
>

Ap

p>p
 _=.

Need = � 6 correspondences to obtain a solution.

Robust estimation. Step 1 - use RANSAC: (1) - randomly sample 6 pairs of
correspondences, (2) - compute p, (3) - compute inliers, (4) - repeat to maximize
inliers.
Step 2 - use the result of previous step as initialisation to a non-linear optimization
step which minimizes re-projection error: argminp

Õ
8=1

(D8 � D̂8)2 + (E8 � Ê8)2, where

(D̂8, Ê8) are estimated from the model.

Recovering R, T and K. Since P = K [R|T] = [KR|KT], we can obtain K and R

by RQ decomposition of P [: 3, : 3]. Then T = K
�1

2666664

?14
?24
?34

3777775
. [20%]

Page 1

(iv) Projection matrix.

2666664

BD

BE

B

3777775
= K

2666664

5 0 0 0
0 5 0 0
0 0 0 /

0E

2

3777775

266666664
R T

0 0 0 1

377777775

266666664

-

.

/

1

377777775
.

Hence,
2666664

BD

BE

B

3777775
=

2666664

5 :DA11 5 :DA12 5 :DA13 5 :D)G + D0/
0E

2

5 :EA21 5 :EA22 5 :EA23 5 :E)H + E0/
0E

2

0 0 0 /
0E

2

3777775

266666664

-

.

/

1

377777775
.

After scale normalisation - linear projection equations:

"
D

E

#
= [2 ⇥ 4]

266666664

-

.

/

1

377777775
.

Advantages. (1) - can be calibrated from 4 points instead of 6 points, (2) - calibration
process is better conditioned (less sensitive to noise than non-linear full perspective
calibration.
Viewing conditions. Assumes that the variation in depth of the objects is small
compared to the distance of the camera to the scene. [15%]

(b) (i)

2666664

BD

BE

B

3777775
= K [' |)]

266666664

-

.

0
1

377777775
= K

2666664

A11 A12)G

A21 A22)H

A31 A32)I

3777775

2666664

-

.

1

3777775
= H

2666664

-

.

1

3777775
, where H

is a 3 ⇥ 3 non-singular (full rank) matrix in the general case (9 parameters, 8 DoF).
Rewriting in homogeneous coordinates: w̃

0 = Hw̃, where w̃ is a homogeneous 2-D
coordinate of a point on the floor plane and w̃

0 - corresponding pixel coordinate. [10%]

(ii) Homogeneous 2-D line equation: l̃
>

w̃ = 0. From w̃
0 = Hw̃ we have

w̃ = H
�1

w̃
0 (since H is full rank). The line equation can be rewritten as

l̃
>(H�1

w̃
0) = 0. Hence the homogeneous line, l̃0, in the image is l̃0 = H

�>
l̃.

[10%]

(iii) Estimating H. Let l̃ = [0, 1, 2]> and l̃
0 = [00, 10, 20]>. Since

l̃ = H
>

l̃
0, we have

2666664

0

1

2

3777775
=

2666664

⌘11 ⌘21 ⌘31
⌘12 ⌘22 ⌘32
⌘13 ⌘23 ⌘33

3777775

2666664

0
0

1
0

2
0

3777775
. This gives two

equations for a single line correspondence and can be rearranged as follows:"
0
0
2 0 �000 1

0
2 0 �100 2

0
2 0 �200

0 0
0
2 �001 0 1

0
2 �101 0 2

0
2 �201

#
h
> =

"
0
0

#
, where h =

[⌘11, ⌘12, · · · , ⌘33]> is a 9 ⇥ 1 column vector. For N pairs we have: Ah = 0,

Page 2

where A is a 2= ⇥ 9 matrix (8DoF, need 4 line correspondences, no three lines
should be parallel). Homogeneous system of equations is solved and matrix H is
robustly estimated in the similar way as in Part(a)(iii).
Advantages of using lines. (1) - lines may be estimated more accurately at the sub-
pixel level. (2) - it is hard to localise points at sub-pixel level and some type of tyles
may not have clear sharp (as opposed to round) corners.
Image rectification. Rectified image is obtained by retrieving pixel intensities for a
point ṽ in the new image from H

�1
ṽ0 in the source image. Bilinear interpolation

can be used to reduce discretisation effects. [20%]

Page 3

3 (a) Convolutional stage.

08, 9 ,2>DC
=
⇣Õ

: ,;,2
8=
F
2>DC

: ,;,2
8=

G
8�: , 9�;,2

8=

⌘
+ 12>DC

Here, 28= - number of input channels, 2>DC - number of output channels, F2>DC
: ,;,2

8=

-
convolution kernel weights for output channel 2>DC .

(1) - Many image properties are translation invariant. (2) - reduces number of parameters
required compared to fully connected layers. (3) - low-level features are likely to be local.
Non-linear stage.

H8, 9 ,2 = 5 (G8, 9 ,2)

6 - (point-wise) non-linear function. E.g. ReLU - 5 (G) = <0G(0, G) or sigmoid -
5 (G) = 1

1+4�G .

(1) - allows a (convolutional) neural network to learn complex (non-linear) decision
boundaries. (2) - a single hidden layer neural network is a universal approximator.
Pooling/subsampling stage.

I8, 9 ,2 = max
: ,;

(G
8�: , 9�;) (e.g. max-pooling)

Note that a stride may be applied to pooling operations and other pooling operations like
average pooling could be used.

Pooling stage is useful to perform image subsampling in order to (1) encourage learning of
feature hierarchies and to (2) reduce the number of paramters required. Also it introduces
(3) a slight translation invariance. [20%]

(b) Let

0
1,(=)
8

=
Õ
:
F
:
G
(=)
8�: , H

1,(=)
8

= 5 (01,(=)
8

)

0
2,(=)
8

=
Õ
;
E
;
H

1,(=)
8�; , H

2,(=)
8

= 5 (02,(=)
8

)

0
(=)
8

=
Õ
3
,
8,3
H

2,(=)
3

, H
(=)
8

= softmax(0(=)1 , 0
(=)
2 , · · ·)

Objective function - ⌧ ({y(=) }, {F, E,,}.

Page 4

m⌧

mH
(=)
8

and
mH

(=)
8

m0
(=)
C

are known.

m⌧

mF
:

=
Õ
=

Õ
8

m⌧

mH
(=)
8

Õ
C

mH
(=)
8

m0
(=)
C

m0
(=)
C

mF
:

=
Õ
=

Õ
8

m⌧

mH
(=)
8

Õ
C

mH
(=)
8

m0
(=)
C

Õ
3

,
C,3
5
0(H2,(=)

3
)
m0

2,(=)
3

mF
:

=

=
Õ
=

Õ
8

m⌧

mH
(=)
8

Õ
C

mH
(=)
8

m0
(=)
C

Õ
3

,
C,3
5
0(H2,(=)

3
)Õ
;

E
;

mH
1,(=)
3�;
mF

:

=

=
Õ
=

Õ
8

m⌧

mH
(=)
8

Õ
C

mH
(=)
8

m0
(=)
C

Õ
3

,
C,3
5
0(H2,(=)

3
)Õ
;

E
;
5
0(01,(=)

3�;)G
3�;�: .

[20%]

(c) (i) It is reasonable to assume that the number of output channels increases further
away from the input to CNN. Hence ⇠1 = 2=, ⇠2 = 2=+1, ⇠3 = 2=+2, where ⇠8 -
the number of output channels in the 8th convolutional layer. Position of pooling
layer does not have an effect on the number of parameters in the network. Hence,

Layer Output shape No. of params.
INPUT � ⇥ � ⇥ 3 0
CONV1 � ⇥ � ⇥ ⇠1 · · 3 · ⇠1 + ⇠1
CONV2 � ⇥ � ⇥ ⇠2 · · ⇠1 · ⇠2 + ⇠2
POOL �

2 ⇥ �

2 ⇥ ⇠2 0
CONV3 �

2 ⇥ �

2 ⇥ ⇠3 · · ⇠2 · ⇠3 + ⇠3

FC !

⇣
�

2
4 · ⇠3 + 1

⌘
· !

Number of parameters, % =
23⇠1 + ⇠1 + 2

⇠1⇠2 + ⇠2 + 2
⇠2⇠3 + ⇠3 +⇣

�
2

4 ⇠3 + 1
⌘
!. Since = 5, � = 32, ! = 100, we have 1703812 =

76⇠1 + ⇠1(50⇠1 + 2) + ⇠1(200⇠1 + 4) + 1024000⇠1 + 100. Hence, ⇠1 = 16 = 24

and = = 4. [20%]

(ii) Number of parameters would be large.
(1) - 3 ⇥ 3 convolutions could be used instead of 7 ⇥ 7 convolutions as in VGG-16.
(2) - A single 7 ⇥ 7 convolution can be approximated as three 3 ⇥ 3 convolutions
applied sequentially.

Slow/inefective learning due to vanishing gradients of inherently difficult learning task.

Page 5

(1) - simply stacking convolutional, non-linear and pooling layers performs worse
both on train and test data after certain depth. (2) - ResNet-34 uses residual
connections which enable the network to fit a potentially simpler residual value
� (G) instead of directly fitting the desired value � (G) = � (G) + G.
Changing weight distribution. During training, updates of the weights of the
preceding layer may significantly change the distribution of the input values to
the succeeding layers, especially for very deep networks.
(1) - ResNet-34 uses batch normalisation to normalise outputs of intermediate layers
as follows.
`
:
= 1

"

Õ
<
H
(<)
:

- mean of mini-batch of " images. f2
:
= 1

"

Õ
<
(H(<)
:

� `
:
)2

- mini-batch variance. Ĥ
(<) =

H
(<)
:

�`
:q

f
2
:
+n

- normalized output. Finally, scaled and

shifted output: H0(<)
:

= WĤ(<)
:

+ V, where W and V are learnable parameters. [25%]

(iii) Objective function. Tripplet loss:

! =
Õ
"

<=1 max
⇣
0, | |e(<)

�
� e

(<)
+ | |22 � | |e(<)

�
� e

(<)
� | |22 + �

⌘
.

Here � - margin parameter, " - number of triplets in a batch, e
�

- CNN features for
the anchor sample, e+ - CNN features for the positive sample, e� - CNN features for
the negative sample.

Changes in the training procedure. (1) Replacing the categorical cross entropy
objective function with the tripplet loss. (2) Sampling tripplets of images (anchor,
positive, negative) instead of a single image when training. An image is considered
to be positive if it contains a road sign of the same class and negative if it contains a
road sign of a different class than the anchor image. (3) Note, augmented versions
of anchor image could be used as examples of positive samples.
Changes in the testing procedure. (1) Instead of directly predicting class labels, one
would first need to compute CNN features of the test image and compare them with
the features of images of road signs in the database. The class of the most similar
image (or the majority class of k closest images) can be used as the output class label
of the test image. (2) Note in this case if one wants to apply the road sign recognition
system in another country, one can simply extend the database with CNN features of
newly collected images of previously unseen classes of road signs. No (re-)training
is required. [15%]

Page 6

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

iPad

Engineering Part IIB 2022

Module 4F12 (Computer Vision) Assessor’s Report

1. Gaussian smoothing, edge detection and SIFT. Attempted by 88/90 Part IIB candi-

dates, average mark 13.5/20.

A popular question. When answering Part (b-i), many struggled with low-level details,

particularly with computing dimensions for convolution outputs, and understanding trade-

o↵s between memory and computation. However, the majority of candidates did well with

applying the key ideas of the course (invariance and nuisance factors) conceptually in (c-iii).

2. Perspective projection and camera calibration. Attempted by 83/90 candidates, av-

erage mark 13.9/20.

Students demonstrated a particularly good knowledge of perspective projection and the

key steps required for calibration with a known 3D object. Parts (a-i) and (a-iv) were

answered exceptionally well. Marks were lost in Parts (b-ii) and (b-iii). Many students were

not successful in deriving a 2-D homogenous representation of a line under homography

transformation.

3. Image classification with convolutional neural networks. Attempted by 23/90 can-

didates, average mark 13.2/20.

Most candidates that attempted this question made excellent progress. Many of the marks

were lost to mistakes in Part (b) requiring to compute the derivative of the objective func-

tion with respect to model parameters and in Part (c-iii) requiring to propose an image

classification approach based on image retrieval.

4. Epipolar geometry and stereo vision. Attempted by 76/90 candidates, average mark

13.3/20.

Parts covering epipolar geometry (a) and fundamental matrix estimation (b) from point cor-

respondences were mostly well answered with occasional marks lost for lack of precision or

detail. Candidates displayed a particularly good understanding of essential matrix decom-

position. Very few candidates noticed that fundamental matrix can not be estimated under

pure rotation in Part (b-ii). Many candidates struggled to explain the key steps of structure

from motion in Part (c).

1

