Computer bndion (4F12 Cribs)-2022
$Q(a)(i)$

$$
S(x, y)=\sum_{-n}^{n} \sum_{-n}^{n} g_{\sigma}(u) g_{\sigma}(v) I(x-u, y-v)
$$

$$
g \sigma(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}} \text { sampled } N=2 n+1 \text { times }
$$

$$
\text { eg. } \sigma=1, n=3
$$

$$
\text { size of kennel }=N=2 n+1
$$

(ii) $Y_{\sigma}(x, y) \stackrel{F T}{\Longleftrightarrow} \operatorname{Co}_{\sigma}\left(\omega, \omega_{2}\right)$

$g_{\sigma}(x) \Longleftrightarrow G_{\sigma}(\omega)$ where $\sigma^{\prime}=\frac{1}{\sigma}$
\therefore Low pass filter with cut of frequacy $\alpha \frac{1}{\sigma}$
(iv)

$$
\begin{aligned}
& F T\left(V^{2} G_{\sigma}(x)\right) \\
& \frac{d^{2} g_{\sigma}(x)}{d x^{2}} \Longleftrightarrow F T-\omega^{2} \mathcal{G}_{\sigma}(\omega) \\
& \underbrace{\text { Goo }}_{\omega} \\
& \sigma^{2} \nabla^{2}\left(y_{\sigma} * I\right) \simeq\left\{\left(y_{\sigma_{i+1}} * I-\mathcal{G}_{i} * I\right) \quad\right. \text { band passfilter } \\
& =I *\left[Y \sigma_{i+1}-\mathcal{G}_{i}\right] \\
& \text { Use difference d blurred images }
\end{aligned}
$$

By examining first order Taylor expansions: $\left.\frac{\partial I}{\partial x}\right|_{(x, y)} \approx I(x-1, y)-2 I(x, y)+I(x+1, y)$. Similarly: $\left.\frac{\partial I}{\partial y}\right|_{(x, y)} \approx I(x, y-1)-2 I(x, y)+I(x, y+1)$.
Hence, $\left.\nabla^{2} I\right|_{(x, y)}=\left.\frac{\partial^{2} I}{\partial x^{2}}\right|_{(x, y)}+\left.\frac{\partial^{2} I}{\partial y^{2}}\right|_{(x, y)}$.
The filter is: $\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0\end{array}\right]$.
Q1.a-iii

While a Fourier transform based implementation of a 2-D convolution can be very efficient for convolving with large filters, it has large over-head costs (requires two forward and one inverse Fourier transform). Direct 2-D convolution with small filters can be implemented very efficiently, especially if separable 2-D filters are used. Also note that smoothing with medium size kernels can be implemented as sequential smoothing with smaller size kernels, providing an efficient way of building image pyramids.

Q (ra) v)

- Sample $S_{\sigma}(x, y)$ at discesehe $\sigma_{i}=\sigma_{0} 2^{i / s}$
(log-scate)
- use incrematal blurr.to blum (In artend

$$
\begin{aligned}
g_{\sigma_{i+1}} & =g \sigma_{k} *_{k}^{k} \cdot \sigma_{i} \\
\sigma_{i+1}^{2} & =\sigma_{k}^{2}+\sigma_{i}^{2} \quad \sigma_{i+1}=2^{\frac{1}{\sigma_{i}}} \\
\therefore \sigma_{k} & =-\sigma_{i}^{2^{2}-1}
\end{aligned}
$$

- Wher $\sigma_{i}-2 \sigma_{0}$, subsample to $\frac{1}{4}$ size by skappins evey-other fixal and evoy other row
(produe a-new-octave)
- re-use some incromatd kemet, g_{σ}

Q(6)
(i) Look for max/min in $\nabla^{2} S_{\Delta}(x, y)$ rorposes Compute on

$$
{ }^{2} \nabla^{2} S_{\sigma}(x, y) \simeq S_{\sigma_{i+1}}(x, y)-S_{\sigma_{i}}(x, y)
$$

Look for locat max/min by inperting 26 neighbovs

(ii) Sample 16×16 at $\int(x, y)$ Compute gradiéts $\nabla S_{\sigma_{i}}(x, y)$ Histogram, 10° bins and lock for a peck (reed smoothins).
Peak Is dominont oriostation

(iii)

Encode 2D shape by looding at gradients ("edges") Invariant to posstion scade and ocientatios
Namatisatien to unit veetor, 128D, give invarioue to ligthig Hishgrams-gwe som pbuskee to distorth a
Poor at object/ocduding boundanies and larse chanses" viewpoint.
(iv) Neorat neignbou of 128D decaptors: Accept matel if $\frac{\left(x_{2} \cdot x\right)}{\left(x_{1} \cdot x\right)}<0$.

Q3
(a)
(i) Gereal motion in a 30 scene.

$$
F=[K]^{-1}\left[T_{x}\right)(R)[K]^{-1}
$$

Where $\left[T_{X}\right]=\left[\begin{array}{ccc}0 & -T_{2} & T_{y} \\ T_{E} & 0 & -T_{X} \\ -T_{y} & T_{x} & 0\end{array}\right]$ skew-symuition matix
(b) Looking at a planor object

$$
\begin{aligned}
& {\left[\begin{array}{c}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{c}
3 \times 3 \\
H
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{cc}
\text { Folus }^{2} & F \\
3 \times 3
\end{array}\right]=[H 1]} \\
& {\left[\begin{array}{c}
s w^{\prime} \\
s v^{\prime} \\
s
\end{array}\right]=\left[\begin{array}{c}
3 \times 3 \\
H_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
Y \\
T
\end{array}\right]=\left[\begin{array}{c}
2 \operatorname{cod} 4 \\
R^{-1} \\
3 \times 3
\end{array}\right]=\left[H_{2}\right]} \\
& \therefore\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=\left(h_{i}\right)\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \quad \text { where } H=H_{2} H_{1}^{-1}
\end{aligned}
$$

Rotatia about opticd centre (esmosaic)

$$
H=[K][R][K]
$$

Version IB/1

Q2.a-ii

Note $R=I$ and $K^{\prime}=K$. Using the property in the question the following holds up to scale:
$K^{-\top}[\mathbf{t}]_{\times} R K^{-1}=K^{-\top}[\mathbf{t}]_{\times} K^{-1}=K^{-\top} K^{\top}[K \mathbf{t}]_{\times}=[\mathbf{e}]_{\times}$.
Since translation is parallel to x -axis $[\mathbf{e}]_{\times}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$.
Hence, $\left[\begin{array}{lll}u^{\prime} & v^{\prime} & 1\end{array}\right]\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]=0$.
It follows $v=v^{\prime}$.
If a pair of stereo cameras is in the aforementioned setup, pixel depth can be recovered purely from disparities (differences in location) of matching pixels situated on the same row in the left and right images. Also matching along horizontal epipolar lines can be performed more accurately and efficiently as there is no need to sample different orientations of patches.
(c) (a) $N=4$ for homography $N=8$ for findonatedinati=ix
(ii) RANSAC

- Random sample (min) pars of conropeadres $\binom{\mathrm{N}=4 \mathrm{frH}}{\mathrm{N}=8$ for F}
- compute Hor F
- cherk fox inliers.
-accept if inier, 7 max.
(d) i) Conic section:

$$
\text { section: } a u^{2}+b u v+c v^{2}+d u+e v+f=0
$$

We con ne-write in homogenous co-ardinater

$$
[u, v, 1]\left[\begin{array}{lll}
a & \frac{b}{2} & \frac{d}{2} \\
\frac{b}{2} & c & \frac{2}{2} \\
\frac{d}{2} & \frac{e}{2} & f
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0
$$

C
(ii) $\therefore(u \vee i) \subset\left[\begin{array}{l}u \\ u \\ 1\end{array}\right)=0$

After change vereup oint $\left(\begin{array}{c}u^{1} \\ v^{1} \\ 1\end{array}\right)=H\left[\begin{array}{c}u \\ v \\ 1\end{array}\right]$
By sublhahe

$$
\left.\left(u^{\prime} v^{\prime} 1\right]\right] H^{-1} C H-\left(\begin{array}{c}
u \\
y \\
1
\end{array}\right)=0
$$

This is shlt an conic section. Circb \rightarrow ellipie.

$$
H^{\prime}=H^{-1} C H
$$

23
(a) Pin-hole conera, no non-linear distartion.
(ii) $\frac{X_{c}}{\left(x_{c}\right)}=R X+I \quad$ Rigidbody

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
1
\end{array}\right]=\left[\begin{array}{lll}
R & 1 & T \\
000-1
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{f X_{c}}{2_{c}} \\
& y=\frac{f Y_{c}}{Z_{c}} \\
& \text { perpective. }
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{f X_{c}}{2_{c}} \\
& y=\frac{f Y_{c}}{Z_{c}} \\
& {\left[\begin{array}{l}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
k_{u} & 0 & u_{0} \\
0 & -k_{v} & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha x \\
\alpha y \\
\alpha
\end{array}\right] \quad C C D \text { plxel scaling }} \\
& \text { CCD pixel scaling } \\
& \therefore\left|\begin{array}{c}
s u \\
s v \\
s
\end{array}\right|=[K][R-\mid T]\left[\begin{array}{c}
\frac{4 x}{x} \\
\vdots \\
\mid
\end{array}\right] \\
& {\left[\begin{array}{c}
s u \\
v \\
v
\end{array}\right]=[3 \times 4]\left[\begin{array}{l}
X \\
Y \\
Z \\
\frac{X}{1}
\end{array}\right]} \\
& \text { Pij } \\
& \text { projechamatox. } \\
& K=\left[\begin{array}{lll}
k & f_{1} & u_{0} \\
0 & k v & v_{0} \\
0 & v & 1
\end{array}\right]=\left(\begin{array}{lll}
\alpha_{u} & 0 & u_{0} \\
0 & \alpha_{v} & v_{i} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(1) $3 D_{\text {points }}^{\text {celubrtion }}:-$ spon larse feld \& view

- eary to localise accurakely and match. must NOT be coplonar or liea.

$$
N>
$$

$\|$ inkram paradt,. Need $S \frac{1}{2}$ ph oo $N \geqslant 6$

Q(Da)(iii).

$$
\begin{aligned}
u_{i}= & \frac{p_{11} X_{i}+p_{12} Y_{i}+p_{13} Z_{i}+p_{14}}{p_{31} X_{1}+p_{32} Y_{i}+p_{33} L_{i}+p_{34}} \\
v_{i}= & \frac{p_{21} X_{i}+p_{22} Y_{i}+p_{23} Z_{i}+p_{24}}{p_{31} X_{i}+p_{32} Y_{i}+p_{33} Z_{i}+p_{34}}
\end{aligned}
$$

Re-arge to give 2 linear equatios in pii

Nimase pt. $A P=0$ Solve by Cast-square - matura

$$
\lambda_{1} \leqslant \frac{p^{\top} A^{\top} A p}{p^{\top} p} \leqslant \lambda_{12}
$$

Find snaller eygavectar corvap padion, to λ_{1} \& $A^{\top} A$. or Look at SVI.

Q 3 (a)(iu)
Need to minimuse mecosmenteror - : propecticn enor

$$
\min _{f} \sum_{i=1}^{\text {from model }}\left(\tilde{u}_{i} \hat{N}_{i} / N\right.
$$

Non-linear optimisation,

Recover 3×4 patno
Decompase $3 \times 3=K R$ by $Q R$ decomposition
Eshinate $T=K^{-1}\left(\begin{array}{l}p_{14} \\ p_{14} \\ p_{34}\end{array}\right)$

$$
\begin{aligned}
& K=\left[\begin{array}{ccc}
-10 & 0 & 0 \\
0 & 0 & -u_{0} \\
0 & 0 & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \therefore f=\frac{{ }_{2} \alpha_{f} \alpha_{u}}{K_{u}} \text { (need pind re) }
\end{aligned}
$$

neodtoknow

Version IB/1

Q3.a-v

Modern mobile phones come with pre-calibrated cameras - the CCD calibration matrix \mathbf{K} is known. World plane to image plane homography \mathbf{H} can be recovered with only 4 points of planar marker.
A point on a world plane is projected to the image as follows:
$\mathbf{w}^{\prime}=\mathbf{K}\left[\begin{array}{llll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3} & \mathbf{T}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 0 \\ 1\end{array}\right]=\mathbf{K}\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{T}\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 1\end{array}\right]$.
Hence $\mathbf{H}=\lambda \mathbf{K}\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{T}\end{array}\right]$.
$\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{T} can be extracted from $\mathbf{K}^{-1} \mathbf{H}$. By normalising \mathbf{r}_{1} and \mathbf{r}_{2} to be unit lenght the correct scale is obtained for \mathbf{T}.
While $\mathbf{r}_{3}=\mathbf{r}_{1} \times \mathbf{r}_{2}$.
Since $\mathbf{R}^{\prime}=\left[\begin{array}{lll}\mathbf{r}_{1} & \mathbf{r}_{2} & \mathbf{r}_{3}\end{array}\right]$ may not be a proper rotation matrix, SVD can be used to obtaining the closest rotation matrix \mathbf{R} to its measurement.
Finally: $\mathbf{P}=\left[\begin{array}{ll}\mathbf{R} & \mathbf{T}\end{array}\right]$.
(1) Thisis a IDporflem - line to live

$$
\ln \text { generd } 1 D\left(\begin{array}{c}
s u \\
s v \\
s
\end{array}\right)=[3 \times 2]\left[\begin{array}{c}
X \\
1
\end{array}\right] \quad \operatorname{cog}(l e t 2=0, v=0)
$$

(i) We con re-paranetive heininage $\left[\begin{array}{c}s l \\ s\end{array}\right]-[2 \times 2]\left[\begin{array}{c}k Z \\ k\end{array}\right]$

$$
=[]\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

(i) Need 3 points to calibrates io. 3 pastings \& know thicknew (or 3 btocked thown thickne.t, 2)
Prodict thickent iy inverty matrx

$$
\left[\begin{array}{l}
z_{i} \\
1
\end{array}\right]=\left[\begin{array}{ll}
p & q \\
r & s
\end{array}\right]^{-1}\left[\begin{array}{l}
L_{i} \\
1
\end{array}\right]
$$

Invorhible

Version RC/1
(a) The convolutional layers CONV1 and CONV2 extract translation invariant features from an image.

The pooling layers MAX-POOL1 and MAX-POOL2 perform image subsampling in order to encourage learning of feature hierarchies and to reduce number of parameters.

The fully connected layer FC1 forms final features of our proposed network. Note that FC1 layer features are not translation invariant.

The use of non-linear activation functions such as Rectified Linear Unit (ReLU) enables the network to learn complex (non-linear) decision boundaries.

The architecture is finalised by adding the fully connected FC2 layer with a Softmax non-linearity. Using this layer corresponds to applying a softmax classifier to the output of layer FC1.

Softmax activation function constraints network output to correspond to a probability distribution over ten class labels.
(b) Detailed calculation of the output shape (OS) of each layer and the corresponding number of parameters (P).
(CONV1, K $=5 \times 5, \mathrm{~S}=1, \mathrm{C}=32, \mathrm{~A}=\mathrm{ReLU}$) $-\mathrm{OS}=28 \times 28 \times 32, \mathrm{P}=5 \times 5 \times 1 \times 32+32=832$.
(MAX-POOL1, $\mathrm{K}=2 \times 2, \mathrm{~S}=2$) $-\mathrm{OS}=14 \times 14 \times 32, \mathrm{P}=0$.
(CONV2, $\mathrm{K}=5 \times 5, \mathrm{~S}=1, \mathrm{C}=48, \mathrm{~A}=\mathrm{ReLU})-\mathrm{OS}=14 \times 14 \times 48, \mathrm{P}=$ $5 \times 5 \times 32 \times 48+48=38448$.
(MAX-POOL2, $\mathrm{K}=2 \times 2, \mathrm{~S}=2$) $-\mathrm{OS}=7 \times 7 \times 48, \mathrm{P}=0$.
($\mathrm{FCl}, \mathrm{C}=256, \mathrm{~A}=\mathrm{ReLU}$) $-\mathrm{OS}=256, \mathrm{P}=7 \times 7 \times 48 \times 256+256=602368$.
(FC2, C $=10, \mathrm{~A}=$ Softmax) $-\mathrm{OS}=10, \mathrm{P}=256 \times 10+10=2570$.
Total number of parameters: 644218 .
(c) Classification accuracy. Too many parameters may make the network overfit to the training data preveffitighteading to a poor performance on test data. Too few parameters may make the network not expressive enough for solving the problem of obese. INTERET. Computational efficiency. Too many parameters may prevent the network from fitting into GPU memory or make it too slow.

VGG-16 reduces the number of parameters by using small 3×3 convolutional filters and by frequent application (every 2 or 3 convolutional layers) of max-pooling based subsampling of the outputs of preceding layers.

Version RC/1

(d) (i) Relative cross-entropy can be used as objective function:

$$
G(W)=-\sum_{n=0}^{N-1} \sum_{c=0}^{9} t_{c}^{(n)} \log y_{c}^{(n)}
$$

Here N is a total number of training images, $t_{c}^{(n)}$ is a one-hot encoded ground truth class label for n-th training image and W is a set of weights $\left\{w_{0,0} \ldots w_{255,9}\right\}$ of the fully connected layer FC2.
(ii) Objective function $G(W)$ can be rewritten as:

$$
\begin{gathered}
G(W)=-\sum_{n=0}^{N-1} \sum_{c=0}^{9} t_{c}^{(n)} \log \left(\frac{\exp \left(\sum_{i=0}^{255} x_{i}^{(n)} w_{c, i}+b_{c}\right)}{\sum_{k=0}^{9} \exp \left(\sum_{i=0}^{255} x_{i}^{(n)} w_{k, i}+b_{k}\right)}\right)= \\
\left.=-\sum_{n=0}^{N-1} \sum_{c=0}^{9} t_{c}^{(n)}\left[\left(\sum_{i=0}^{255} x_{i}^{(n)} w_{c, i}+b_{c}\right)\right)-\log \left(\sum_{k=0}^{9} \exp \left(\sum_{i=0}^{255} x_{i}^{(n)} w_{k, i}+b_{k}\right)\right)\right]
\end{gathered}
$$

Hence, we have:

$$
\frac{d G(W)}{d w_{c, i}}=-\sum_{n \in N_{1}}\left[x_{i}^{(n)}-y_{c}^{(n)} x_{i}^{(n)}\right]-\sum_{n \in N_{0}}\left[-y_{c}^{(n)} x_{i}^{(n)}\right]=-\sum_{n=0}^{N-1}\left(t_{c}^{(n)}-y_{c}^{(n)}\right) x_{i}^{(n)}
$$

Here N_{1} corresponds to a set of data points for which $t_{c}^{(n)}=1$ and N_{0} corresponds to a set of data points for which $t_{c}^{(n)}=0$.

Note that students were not explicitly shown how to calculate derivatives for the relative cross-entropy objective function during lectures.
(e) A batch normalization layer should be added. It increases networks ability to fit training data (convergence speed) by simplifying optimization procedure. In particular, it normalises the outputs of the convolutional layers CONV1 and CONV2 so that output vectors of these layers have zero mean and unit variance for each batch. Note that the answer cannot be a dropout layer since it would result in an even longer training time, if applied.

Engineering Part IIB 2021

Module 4F12 (Computer Vision) Assessor's Report

1. Gaussian smoothing, bandpass filtering and SIFT. Attempted by 74/81 Part IIB candidates, average mark 13.9/20.

The first part of the question covering convolution with low pass filters was generally well answered. Second part convering image pyramid construction and scale estimation was answered particularly well. Some marks were lost in the third part covering SIFT descriptor invariance to lightning and viewpoint changes. Many students missed the verfication step performed in SIFT feature matching.
2. Epipolar geometry and stereo vision. Attempted by $63 / 81$ candidates, average mark 13.6/20.

Parts covering epipolar geometry (a), 2D projective transformation (b) and transformation estimation from point correspondences (c) were mostly well answered with occasional marks lost for lack of precision or detail: e.g. determining the right number of degrees of freedom (DoF) but using a wrong number of constraints provided point to compute total number of point correspondences needed. Candidates displayed a particularly good understanding of RANSAC algorithm. Part (d-i) of the question on conic sections was found easy by most candidates while many struggled to derive the equation for conic section in the second viewpoint in part (d-ii).
3. Perspective projection and camera calibration. Attempted by 77/81 candidates, average mark 13.9/20.
Part (a) was well answered by most of the students. They demonstrated a particularly good knowledge of perspective projection and the key steps required for calibration with a known 3D object. Marks were lost in part (a-v) as only a handfull of students noticed that in order to recover projection matrix from a single image of a known planar object, the knowledge of intrisic parameters of the camera (e.g. mobile phone) is required. Most of the students noticed that part (b-i) covered the modelling of a line to line projection. Marks were lost in providing the details of how the wood chip thickness can be recovered using this projection model in part (b-ii).
4. Image classification with convolutional neural networks. Attempted by 27/77 candidates, average mark 14.1/20.
Many candidates that attempted this question made excellent progress. Most of the marks were lost to mistakes in computing the derivative of the loss function with respect to model parameters.

