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Ql.a-iv

By examining first order Taylor expansions: %l(x’y) ~I(x—-1,y)=21(x,y)+ I(x + 1,y).
Similarly: g—;l(x,y) ~I(x,y—1)=2I(x,y)+ I(x,y + 1).

) _ 8 021
Hence, V=I|(y ) = a7|(x,y) + 3_y2|(x,y)'

0O 1 0
The filteris: | 1 -4 1
0O 1 0

Ql.a-iii

While a Fourier transform based implementation of a 2-D convolution can be very efficient
for convolving with large filters, it has large over-head costs (requires two forward and one
inverse Fourier transform). Direct 2-D convolution with small filters can be implemented
very efficiently, especially if separable 2-D filters are used. Also note that smoothing
with medium size kernels can be implemented as sequential smoothing with smaller size
kernels, providing an efficient way of building image pyramids.
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Version IB/1

Q2.a-ii

Note R = [ and K’ = K. Using the property in the question the following holds up to
scale:
K Tty RK =K T[t], K~ = K" TKT [Kt]y = [e]y.

0 0 O
Since translation is parallel to x-axis [e]l, = 0 0 1
0 -1 0
0O 0 O u
Hence, [« v 1 |[0 0 1|]v]|=0
0 -1 0

It follows v = v/,

If a pair of stereo cameras is in the aforementioned setup, pixel depth can be recovered
purely from disparities (differences in location) of matching pixels situated on the same
row in the left and right images. Also matching along horizontal epipolar lines can
be performed more accurately and efficiently as there is no need to sample different
orientations of patches.
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Q3.a-v

Modern mobile phones come with pre-calibrated cameras - the CCD calibration matrix K
is known. World plane to image plane homography H can be recovered with only 4 points
of planar marker.

A point on a world plane is projected to the image as follows:

X
X

:K[rl rn T] Y
1

w':K[rl r, ry T] Y
0

1

Hence H = /lK[ rp rpp T ]

ri, rp and T can be extracted from K 'H. By normalising r and r; to be unit lenght the

correct scale is obtained for T.

While r3 = ry Xrp.

Since R’ = [ rp r rj ] may not be a proper rotation matrix, SVD can be used to

obtaining the closest rotation matrix R to its measurement.
Finally: P = [ R T ]
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(a) The convolutional layers CONV1 and CONV?2 extract translation invariant
features from an image.

The pooling layers MAX-POOL1 and MAX-POOL2 perform image subsampling in order
to encourage learning of feature hierarchies and to reduce number of parameters.

The fully connected layer FC1 forms final features of our proposed network. Note that
FC1 layer features are not translation invariant.

The use of non-linear activation functions such as Rectified Linear Unit (ReLU) enables
the network to learn complex (non-linear) decision boundaries.

The architecture is finalised by adding the fully connected FC2 layer with a Softmax

non-linearity. Using this layer corresponds to applying a softmax classifier to the output
of layer FC1.

Softmax activation function constraints network output to correspond to a probability
distribution over ten class labels. [20%]

(b) Detailed calculation of the output shape (OS) of each layer and the corresponding
number of parameters (P).

(CONV1,K=5x5,8S=1,C=32, A=RelLU)- OS =28x28x%x32, P=5x5x1x32+32 = 832.
(MAX-POOL1,K=2%x2,8§=2)-08S=14%14%x32,P=0.

(CONV2, K=5x%x5,S=1,C =48, A =ReLU) - OS =14 x 14 x48, P =
5x5x%x32x48 +48 = 38448.
(MAX-POOL2,K=2x%x2,S=2)-0S=7%x7%x48,P=0.

(FC1,C =256, A=ReLU)-0S =256,P=7 x7x48 x 256 + 256 = 602368.

(FC2, C =10, A = Softmax) - OS = 10, P =256 x 10 + 10 = 2570.

Total number of parameters: 644218. [15%]

(c) Classification accuracy. Too many parameters may make the network overfit to the

v L7
training data prevg*ﬁ&g-'leaémg—to a poor performance on test data. Too few parameters
may make the network not expressive enough for solving the problem of oheise. /W7 <2ei7,

Computational efficiency. Too many parameters may prevent the network from fitting into
GPU memory or make it too slow.

VGG-16 reduces the number of parameters by using small 3x3 convolutional filters and by
frequent application (every 2 or 3 convolutional layers) of max-pooling based subsampling
of the outputs of preceding layers. [20%0]
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Version RC/1

(d) (i) Relative cross-entropy can be used as objective function:

G(W) = Z Z 1" log y™

n=0 c=0

1 s a one-hot encoded ground truth
class label for n-th training image and W is a set of weights {wgg...w2559} of the
fully connected layer FC2.

Here N is a total number of training images, #;

(iiy Objective function G(W) can be rewritten as:

N-1 9
G(W) = — Z Zté") log

exp (21.2_5,5 xf")wc,,- + bc)

n=0 c=0 >? k=0 €XP (21253 x,(") Wi + bk)

255 9 255
— Z Z g [(Z x(")w” + bc)) log (Z exp (Z x'!")wk,,’ - bk))]

n=0 ¢=0 k=0 i=0

Hence, we have:
dG(W) B Z [ (n) _ (n) (n)] [ y(n)x(n)] _ Nz_:l(t(n) _ y(n))x(n)

. - [54 ; - (e C 1
dWC,, nenN; neNg l n=0 '

Here N) corresponds to a set of data pomts for which t(")

to a set of data points for which t(n)

= 1 and Ny corresponds

Note that students were not explicitly shown how to calculate derivatives for the
relative cross-entropy objective function during lectures.

(e) A batch normalization layer should be added. It increases networks ability to fit
training data (convergence speed) by simplifying optimization procedure. In particular,
it normalises the outputs of the convolutional layers CONV1 and CONV2 so that output
vectors of these layers have zero mean and unit variance for each batch. Note that the
answer cannot be a dropout layer since it would result in an even longer training time, if
applied.
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Engineering Part 11B 2021
Module 4F12 (Computer Vision) Assessor’s Report

1. Gaussian smoothing, bandpass filtering and SIFT. Attempted by 74/81 Part IIB
candidates, average mark 13.9/20.

The first part of the question covering convolution with low pass filters was generally well
answered. Second part convering image pyramid construction and scale estimation was
answered particularly well. Some marks were lost in the third part covering SIFT descriptor
invariance to lightning and viewpoint changes. Many students missed the verfication step
performed in SIFT feature matching.

2. Epipolar geometry and stereo vision. Attempted by 63/81 candidates, average mark
13.6/20.

Parts covering epipolar geometry (a), 2D projective transformation (b) and transformation
estimation from point correspondences (c) were mostly well answered with occasional marks
lost for lack of precision or detail: e.g. determining the right number of degrees of freedom
(DoF) but using a wrong number of constraints provided point to compute total number
of point correspondences needed. Candidates displayed a particularly good understanding
of RANSAC algorithm. Part (d-i) of the question on conic sections was found easy by
most candidates while many struggled to derive the equation for conic section in the second
viewpoint in part (d-ii).

3. Perspective projection and camera calibration. Attempted by 77/81 candidates, av-
erage mark 13.9/20.

Part (a) was well answered by most of the students. They demonstrated a particularly good
knowledge of perspective projection and the key steps required for calibration with a known
3D object. Marks were lost in part (a-v) as only a handfull of students noticed that in order
to recover projection matrix from a single image of a known planar object, the knowledge
of intrisic parameters of the camera (e.g. mobile phone) is required. Most of the students
noticed that part (b-i) covered the modelling of a line to line projection. Marks were lost in
providing the details of how the wood chip thickness can be recovered using this projection
model in part (b-ii).

4. Image classification with convolutional neural networks. Attempted by 27/77 can-
didates, average mark 14.1/20.

Many candidates that attempted this question made excellent progress. Most of the marks
were lost to mistakes in computing the derivative of the loss function with respect to model
parameters.



